PROPOSED REGULATION OF THE STATE ENVIRONMENTAL COMMISSION

LCB FILE NO. R130-22I

The following document is the initial draft regulation proposed by the agency submitted on 06/28/2022

PROPOSED REGULATION OF

THE STATE ENVIRONMENTAL COMMISSION

File No. P2022-11

June 27, 2022

EXPLANATION – Matter in *italics* is new; matter in brackets [omitted material] is material to be omitted.

AUTHORITY: §1, NRS 445A.425 and 445A.428; §2, NRS445A.860 and 445A.863; § 3, NRS 459.485 and 459.500.

Sec. 1: NAC 445A.066 is hereby amended to read as follows:

NAC 445A.066 Fees for certification

- 1. [Except as otherwise provided in subsection 2, a] A laboratory must submit an annual fee of [\$500] \$700 with each application for certification.
- = [2. A laboratory which only performs analysis for microbiology is not required to pay the fee provided pursuant to subsection 1.]
- 2. [3.] In addition to the fee required pursuant to the provisions of [subsections] subsection 1 [and 4], a laboratory must submit an annual certification fee for each category of contaminant for which certification is requested. The categories of contaminants and annual fees are:

[CATEGORY OF CONTAMINANT]

FEE]

[Asbestos	\$400]
[Cyanide	250]
[Demands	350]
[Dioxin	-545]
[Herbicides	-545]
Microbiology	-400]
[Minerals	-400]
[Nutrients	-250]
[Oil and Grease	-250]
[Perchlorate	-250]
[Pesticides	-545]
[Phenolics	-250]
[Polyaromatic hydrocarbons	-545]
[Polychlorinated biphenyls in oil	-545]
[Polychlorinated biphenyls in wastewater	-545]
[Radiochemistry	-545]
[Residual chlorine	-125]
[Residue	-350]
[Semivolatile organic chemistry	-545]

[Synthetic Organic Compounds Group	l (includes s	emi volati	le organic)	
ehemistry, pesticides, herbicides and	l polyaromat	ie hydroca	irbons		-1,500]
[Toxicity bioassay					-400]
[Trace metals					-545]
[Volatile organic chemistry					-545]
[Any other individual contaminant					-200]
[Any other individual multi contaminan	nt method				400]
CATEGORY OF CONTAMINAN	T				
	Year 1	Year 2	Year 3	Year 4	Year 5
Non-potable Water Fees:	2023	2024	2025	2026	2027
Minerals	<i>\$560</i>	588	617	<i>648</i>	680
Nutrients	\$350	36 8	386	405	425
Oil and grease	\$350	<i>368</i>	386	405	425
Perchlorate	\$350	<i>368</i>	386	405	425
Pesticides	<i>\$763</i>	801	841	883	927
Phenolics	\$350	<i>368</i>	386	405	425
Polychlorinated biphenyls wastew	ater \$763	801	841	883	927
Radiochemistry	<i>\$763</i>	801	841	883	927
Residual chlorine	\$175	184	193	203	213

\$370

\$763

Residue

Semi-volatile organic chemistry

27

Toxicity bioassay	<i>\$560</i>	588	<i>617</i>	648	680		
Trace Metals	<i>\$763</i>	801	841	883	927		
Volatile organic chemistry	<i>\$763</i>	<i>801</i>	841	883	927		
Any other multi-contaminant method	<i>\$560</i>	588	617	<i>648</i>	680		
Any other single contaminant method		<i>368</i>	386	405	425		
		801	841	883			
·		588	617	648			
•		801	841	883			
•	φ/ 03	001	041	003	921		
Microcystins/Nodularins,							
Cylindrospermopsin, Anatoxin-a	<i>\$1580</i>	1588	<u> 1667</u>	1750	1838	}	
		Year	.1	Year 2	Year 3	Year 4	Year 5
Mining Fees:		2	2023	2024	2025	2026	2027
Mining Fees: Any other individual contaminant – C	Syanide	\$350°			2025 386	2026 405	2027 425
	•)	368			
Any other individual contaminant – C	7572- 11	\$350))	368 368	386	405	425
Any other individual contaminant – C Any other individual contaminant-D7	2572- 11 etal	\$350 \$350))	368 368 368	386 386	405 405	425 425
Any other individual contaminant – C Any other individual contaminant-D7 Any other individual contaminant-Me	2572- 11 etal RP	\$350 \$350 \$350 \$350)))	368 368 368	386 386 386	405 405 405	425 425 425
Any other individual contaminant – Contamina	7572- 11 etal RP -C1308-08	\$350 \$350 \$350 \$350 \$560)))	368 368 368 368 368 588	386 386 386 386 617	405 405 405 405	425 425 425 425
Any other individual contaminant – Contamina	7572- 11 etal RP -C1308-08 -D5744-12	\$350 \$350 \$350 \$350 \$560		368 368 368 368 588 801	386 386 386 386 617	405 405 405 405 648	425 425 425 425 680
Any other individual contaminant – Contamina	7572- 11 etal RP -C1308-08 -D5744-12 -E1915	\$350 \$350 \$350 \$350 \$560		368 368 368 368 588 801 588	386 386 386 386 617 841	405 405 405 405 648 883	425 425 425 425 680 927
Any other individual contaminant – Contaminant method – Any other multi-contaminant method – Any other multi-contaminant method – Any other multi-contaminant method – Contaminant method – Con	7572- 11 Petal RP -C1308-08 -D5744-12 -E1915 -EPA 600	\$350 \$350 \$350 \$350 \$560 \$560		368 368 368 368 588 801 588 588	386 386 386 386 617 841 617	405 405 405 405 648 883 648	425 425 425 425 680 927 680

- For the calendar year beginning on January 1, 2027, and for each calendar year thereafter, the Director shall increase each fee required by this subsection by an amount that is equal to 4 percent of the fee for the immediately preceding fiscal year. The Director of the Department of Conservation and Natural Resources or the Director's designee may, for any individual fiscal year, suspend an increase in a rate or fee specified in this subsection.
- [4]3. In addition to the fees required pursuant to the provisions of subsections 1 and [3] 2, if a laboratory applies for certification for a contaminant in more than two of the approved methods of testing for that contaminant, the laboratory must submit a fee of \$ 280 for each additional approved method of testing.
- [5] 4. If a laboratory applies for certification for additional contaminants after the laboratory has been issued a certification for an annual period of certification, the fee for certification for each additional contaminant is the fee provided for that contaminant pursuant to the provisions of subsection [3.] 2. The fee must be prorated pursuant to subsection [6] 5 if the provisions of that subsection otherwise apply. If the Division conducts an evaluation for certification at the laboratory, the laboratory must pay, at the rate provided for state officers and employees generally, the actual travel and per diem expenses of the Division. If the laboratory is located outside of this State, [the expenses must be paid pursuant to the provisions of subsection 7] the laboratory must pay the actual travel and per diem expenses of the employee of the Division who conducts the evaluation.

[6] 5. The fees are effective for 12 months beginning on August 1 of each year. If an application for certification to test for an analyte is submitted during that period, the fees for that certification must be prorated using the following formula:

Fee X .083 X the number of months remaining in the period of certification.

For the purpose of prorating fees, an application for certification to test for an analyte shall be deemed to have been submitted at the beginning of a month regardless of the date of the application. The prorated fee must be rounded to the next highest dollar. The fee provided pursuant to the provisions of subsection 1 must not be prorated.

- [7. If an evaluation for certification of a laboratory that is located outside of this State is conducted, the laboratory must pay the actual travel and per diem expenses of the employee of the Division who conducts the evaluation.]
- [8]6. The fee for certification to test for a specific analyte must be paid before a certificate for that analyte may be issued.
 - [9] 7. Any fee paid pursuant to the provisions of this section is nonrefundable.

Sec. 2: NAC 445A.54296 is hereby amended to read as follows:

NAC 445A.54296 Fees.

- 1. A laboratory must submit an annual fee of \$700 with [E] each application for certification.[:]
- [(a) Chemistry certification must include a fee of \$500.]
- [(b) Microbiology certification must include a fee of \$600.]
- 2. In addition to the fees specified in subsection 1, the Bureau shall charge and collect the following fees:

[For an application to renew certification]	[\$500]
[Initial fee or annual renewal fee for certification to analyze primary inorganic	
contaminants]	[545]
[Initial fee or annual renewal fee for certification to analyze secondary inorganic	
contaminants]	[545]
[Initial fee or annual renewal fee for certification to analyze regulated and	
unregulated volatile organic contaminants, including trihalomethanes and	
vinyl chloride]	[545]
[Initial fee or annual renewal fee for certification to analyze regulated and	
unregulated synthetic organic contaminants]	$[\frac{1,090}{}]$
[Initial fee or annual renewal fee for certification to analyze radiochemical	
contaminants]	[545]
[Annual renewal fee for certification to analyze specific primary or secondary	
inorganic contaminants, or both]	[200]
[Annual renewal fee for microbiology certification]	[600]

	Year 1	Year 2	Year 3	Year 4	Year 5
	2023	2024	2025	2026	2027
Asbestos	<i>\$560</i>	588	<i>617</i>	648	<i>681</i>
Cyanide	\$350	368	386	405	425
Dioxin	<i>\$763</i>	801	841	883	927
Herbicides	<i>\$763</i>	801	841	883	927
Microbiology	<i>\$560</i>	588	<i>617</i>	648	<i>681</i>
Minerals	<i>\$560</i>	588	<i>617</i>	648	<i>681</i>
Nutrients	\$350	368	386	405	425
Perchlorate	\$350	<i>368</i>	386	405	425
Pesticides	<i>\$763</i>	801	841	883	927
Phenolics	\$350	<i>368</i>	386	405	425
Polyaromatic hydrocarbons	<i>\$763</i>	801	841	883	927
PCP Screening	<i>\$763</i>	801	841	883	927
Synthetic organic compounds	s \$763	801	841	883	927
Toxicity bioassay	<i>\$560</i>	588	<i>617</i>	648	<i>681</i>
Trace metals	<i>\$763</i>	801	841	883	927
Volatile organic compounds	<i>\$763</i>	801	841	883	927
Single analyte method	\$350	<i>368</i>	386	405	425
Multi-analyte method	<i>\$560</i>	588	617	648	<i>681</i>
Hardness	\$350	<i>368</i>	386	405	425

pH	<i>\$350</i>	368	386	405	425
Total Residual Chlorine	<i>\$350</i>	36 8	386	405	425
Chlorine dioxide	\$350	36 8	386	405	425
Alkalinity	\$350	368	386	405	425
Dissolved Oxygen	\$350	368	386	405	425
Temperature	\$350	368	386	405	425
Conductivity	<i>\$350</i>	<i>368</i>	386	405	425

For the calendar year beginning on January 1, 2027, and for each calendar year thereafter, the Director shall increase each fee required by this subsection by an amount that is equal to 4 percent of the fee for the immediately preceding fiscal year. The Director of the Department of Conservation and Natural Resources or the Director's designee may, for any individual fiscal year, suspend an increase in a rate or fee specified in this subsection.

- 3. The initial or annual renewal fee for certification to analyze any chemical contaminant not set forth in subsection 2 is \$\frac{1400}{560}\$, plus the per diem allowance and travel expenses provided for state officers and employees generally for each person who conducts an inspection that is required for certification of the laboratory.

 If the laboratory is located outside of this State, the laboratory must pay the actual travel and per diem expenses of the employee of the Division who conducts the evaluation.
- 4. If an application for certification to test for an analyte is received during the fiscal year, the fees for that certification must be prorated by using the following formula:

Fee x .083 x the number of months remaining in the fiscal year.

The month in which the application is submitted must not be counted as a month remaining in the fiscal year. The

prorated fee must be rounded to the next highest dollar. The fee for submitting an application for certification to

test for an analyte must not be prorated.

[5. In addition to any fees paid by a laboratory located outside this State, each such laboratory shall pay to

the Bureau the costs incurred by the Bureau to conduct an inspection of the laboratory.]

[6]5. A fee for certification to analyze a specific contaminant must be paid before a certificate may be issued.

[7]6. Any fee paid pursuant to the provisions of this section is nonrefundable.

Sec. 3: NAC 459.96986 is hereby amended to read as follows:

NAC 459.96986 Fees for certification.

1. Except as otherwise provided in subsection 2, a laboratory must submit an annual fee of \$[500]700 with

each application for certification.

[2]. [A laboratory which only performs analysis for microbiology is not required to pay the fee provided

pursuant to subsection 1.]

[3]-2. In addition to the fee required pursuant to the provisions of subsections 1 and [4] 3, a laboratory must

submit an annual certification fee for each category of contaminant for which certification is requested. The

categories of contaminants and annual fees are:

ICATEGORY OF CONTAMINANT

ANNUAL FEE

FBulk asbestos analysis of hazardous waste

\$4001

[Characteristics of hazardous waste	350]
[Dioxin in hazardous waste	400]
[Herbicides	545]
[Immunoassay methods for hazardous waste	545]
[Infrared analysis of hazardous waste	545]
[Inorganic chemistry of hazardous waste	545]
[Liquid chromatography for hazardous waste	545]
[Microbiology	400]
[Miscellaneous Screening methods for hazardous waste	400 per method]
[Pesticides	545]
[Physical properties of hazardous waste	350]
[Polyaromatic hydrocarbons in hazardous waste	545]
[Polychlorinated biphenyls in hazardous waste	545]
[Radiochemistry of hazardous waste	545]
[Semivolatile organic chemistry of hazardous waste 545]	}
[Toxicity bioassay of hazardous waste	400]
[Trace metals in hazardous waste	545]
[Volatile organic chemistry of hazardous waste	545]
[Any other individual contaminant	200]
[Any other individual multi contaminant method	400]

Resource Conservation Recovery Act (RCRA) Fees

	Year 1	Year 2	Year 3	Year 4	Year 4
	2023	2024	2025	2026	2027
CATEGORY OF CONTAMINANT					
Bulk asbestos analysis of hazardous waste	\$560	588	617	648	681
Characteristics of hazardous waste	\$490	515	540	567	596
Dioxin in hazardous waste	\$763	801	841	883	927
Herbicides	\$763	801	841	883	927
Immunoassay methods for hazardous waste	\$763	801	841	883	927
Infrared analysis of hazardous waste	\$763	801	841	883	927
Inorganic chemistry of hazardous waste	\$763	801	841	883	927
Liquid chromatography for hazardous waste	\$763	801	841	883	927
Microbiology	\$560	588	617	648	681
Miscellaneous screening methods for hazardous waste	\$560	588	617	648	681
Pesticides	\$763	801	841	883	927
Physical properties Characterization of hazardous waste	\$763	801	841	883	927
Polyaromatic hydrocarbons in hazardous waste	\$763	801	841	883	927
Polychlorinated biphenyls in hazardous waste	\$763	801	841	883	927
Radiochemistry of hazardous waste	\$763	801	841	883	927
Semi-volatile organic chemistry of hazardous waste	\$763	801	841	883	927
Toxicity bioassay of hazardous waste	\$560	588	617	648	681
Trace metals in hazardous waste	\$763	801	841	883	927
Volatile organic chemistry of hazardous waste	\$763	801	841	883	927
Any other individual contaminant	\$763	801	841	883	927

Any other individual multi-contaminant method	\$763	801	841	883	<i>9</i> 27

For the calendar year beginning on January 1, 2027, and for each calendar year thereafter, the Director shall increase each fee required by this subsection by an amount that is equal to 4 percent of the fee for the immediately preceding fiscal year. The Director of the Department of Conservation and Natural Resources or the Director's designee may, for any individual fiscal year, suspend an increase in a rate or fee specified in this subsection.

[4]3. In addition to the fees required pursuant to the provisions of subsections 1 and [3]2, if a laboratory applies for certification for a contaminant in more than two of the approved methods of testing for that contaminant, the laboratory must submit a fee of \$[200]280 for each additional approved method of testing.

[5]4. If a laboratory applies for certification for additional contaminants after the laboratory has been issued a certification for an annual period of certification, the fee for certification for each additional contaminant is the fee provided for that contaminant pursuant to the provisions of subsection [3]2. The fee must be prorated pursuant to subsection [6]5 if the provisions of that subsection otherwise apply. If the Division conducts an evaluation for certification at the laboratory, the laboratory must pay, at the rate provided for state officers and employees generally, the actual travel and per diem expenses of the Division. If the laboratory must pay the actual travel and per diem expenses of the employees of the Division who conducts the evaluation.

[6]5. The fees are effective for 12 months beginning on August 1 of each year. If an application for certification to test for an analyte is submitted during that period, the fees for that certification must be prorated using the following formula:

Fee X .083 X the number of months remaining in the period of certification.

For the purpose of prorating fees, an application for certification to test for an analyte shall be deemed to have been submitted at the beginning of a month regardless of the date of the application. The prorated fee must be rounded to the next highest dollar. The fee provided pursuant to the provisions of subsection 1 must not be prorated.

[7. If an evaluation for certification of a laboratory that is located outside of this State is conducted, the laboratory must pay the actual travel and per diem expenses of the employee of the Division who conducts the evaluation.]

[8]6. The fee for certification to test for a specific analyte must be paid before a certificate for that analyte may be issued.

[9]7. Any fee paid pursuant to the provisions of this section is nonrefundable.