USGS Water Quantity Studies in Nevada

Michael L. Strobel, Deputy Director
Daniel Bright, Studies Chief, S. NV
Nevada Water Science Center
USGS Studies in Nevada

- Great Basin National Park
- Ruby Valley
- Diamond Valley
- Fallon Basalt Aquifer
- Humboldt River Basin
- Walker Lake
- Muddy and Virgin River ET
- Topock Marsh ET (LCR)
- Carson Valley
- Amargosa Desert
- BARCASS
General Approach of Study

<table>
<thead>
<tr>
<th>General Focus of Study</th>
<th>SW/GW Interaction</th>
<th>Parameter Specific</th>
<th>Numerical Model Refinement/Application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GBNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ruby V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GW</td>
<td>Diamond V.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fallon Aquifer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BARCASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amargosa Desert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muddy/Virgin River ET</td>
<td>Topock Marsh (LCR) ET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Synthesis/ Hydrologic Evaluation (Conceptual Model)</td>
<td>Numerical Model Development/Application</td>
<td>Numerical Model Refinement/Application</td>
<td></td>
</tr>
</tbody>
</table>

Map
- Humboldt River Basin
- Ruby Valley & Ruby Lake
- Great Basin National Park
- Carson Valley
- Diamond, Antelope, Kohehe, & Monbey Valleys
- Muddy River Springs
- Topock Marsh National Wildlife Refuge
- Ruby Valley & Ruby Lake
- Ruby Valley & Ruby Lake
Common Terms/Themes

Hydrologic Evaluation Studies:
- Recharge
- Natural discharge – ET, springs, streams
- Water budgets – basin or regional
 - Important for perennial yield/water availability
 - Understanding inflows and outflows to aquifer system
 - Quantify discharge – may limit PY

GW Flow Models:
- Can refine water budget
- Main application – address specific assessment, particularly to evaluate potential impacts to pumping

<table>
<thead>
<tr>
<th>General Focus of Study</th>
<th>SW/GW Interaction</th>
<th>GW</th>
<th>Parameter Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GBNP Ruby V.</td>
<td></td>
<td>Diamond V. Fallon Aquifer BARCASS</td>
</tr>
<tr>
<td></td>
<td>Humboldt R. Walker Lake</td>
<td></td>
<td>Muddy/Virgin River ET</td>
</tr>
<tr>
<td></td>
<td>Carson V.</td>
<td></td>
<td>Topock Marsh (LCR) ET</td>
</tr>
</tbody>
</table>

Data Synthesis/ Hydrologic Evaluation (Pre-Model)

Model Development/ Application

Model Refinement/ Application

General Approach of Study
Great Basin National Park

Problem: Concern that proposed GW pumping in Snake and Spring Valleys may impact Park’s water resources and riparian habitat

Purpose: Determine areas where springs and streams in GRNP could be affected by ground-water withdrawals from the adjacent valleys

Approach:
- Quantify discharge of major streams and springs within GBNP
- Assess natural variability in flow (disturbance)
- Evaluate geologic formations and structure to determine potential areas of hydraulic connection with adjacent basin-fill sediments

Products: Final report in review
Ruby Valley

Problem: Ruby Valley water resources undergoing adjudication; uncertainty in previous estimates of recharge and discharge

Purpose: Understand conceptual aquifer system; reduce uncertainty of recharge/discharge estimates and revise/validate water budget

Approach: Phase I to define ET, the principal discharge from the valley. Phase II to describe the hydrogeologic framework of Ruby Valley and update previous water budget

Products:
- Phase I: Berger and others, 2003
- Phase II: Berger, in review
Diamond Valley

Problem: Water-level declines from agricultural pumping; concern that water resources may be a target for development in watershed (Monitor, Kobeh, Antelope, and Diamond Valleys)

Purpose: Understand conceptual aquifer system, delineate area of WL declines, and update water budget

Approach: Phase one, FY 2005-2006
- Define extent of alluvial aquifers
- Make preliminary estimates of subsurface flow
- Define movement of GW in alluvial aquifers
- Quantify water-level changes since 1960's

Long-term objectives (proposal):
- Refine water budgets
- Quantify GW flow between basins
- Define effects of pumping
- Define interactions between alluvial and carbonate-rock aquifers
Fallon Basalt Aquifer

Problem: Water-level declines and increases in chloride concentrations in basalt aquifer - the sole source of supply for the City of Fallon, Naval Air Station Fallon, and the Fallon Paiute-Shoshone Tribe

Purpose: Determine locations and volume of poor-quality water entering the basalt aquifer

Approach:
- Phase I completed: Deep-well drilling and water quality sampling (except west side of basin)
- Long-term plans:
 - Drill/sample on west side of basin
 - Linked GW and WQ model

Products:
- Test Drilling Rept: Maurer, 2002
- Hydrogeology Rept: Maurer, 2001
Humboldt River Basin

Problem: Increasing demands for limited water supply and potential effects of mine dewatering on flow of the Humboldt River

Purpose of current phase: Evaluate potential impacts to Humboldt River from mine dewatering using numerical simulation

Approach: Water budgets for 14 basins in Middle Humboldt (completed); linked streamflow, watershed, and ground-water flow models to simulate SW/GW interaction. Study from 1995 – 2006 (final report year)

Products: Numerous reports completed
(http://nevada.usgs.gov/humb/progress.htm)

- Studies Nearing Completion (scheduled for 2006):
 - Streamflow Trends, Humboldt River from Elko to Imlay, 1950-99
 - Carlin Trend Area Water-Level Changes, 1989-2003
 - Numerical Model of Linked Ground-Water/Surface-Water Flow, Middle Humboldt River Basin
Walker Lake

Problem: Lake salinity continues to increase; concern that water will not be able to support the Lahontan Cutthroat Trout, a threatened species

Purpose: Develop capability (model) to predict changes in irrigation practices and effect on flow into, and salinity of, Walker Lake

Approach:
- Refine water budget by quantifying inflow from streams/GW and outflow via ET/evaporation
- Develop a model based on the water budget and studies of SW/GW interaction
- Final report in 2008
Muddy/Virgin River ET

Problem: USFS, NPS, and BLM concerned that pumping of ground water will adversely impact local aquatic and riparian ecosystems, including Moapa Valley NWR

Purpose: Provide estimates of evapotranspiration from major discharge areas for input into GW flow model being developed by NPS

Approach:
- Collect micrometeorological and soil data from instrumentation at multiple sites to calculate ET rates
- Based on vegetation density (not type), extrapolate ET rates using satellite imagery and remote sensing techniques
- Final report in 2007
Problem: Uncertainty about the method and rates of previously estimated ET for riparian vegetation along the lower Colorado River

ET estimates are needed for an accounting model used by USBR for water gains/losses

Purpose:
- Quantify ET losses from riparian vegetation along a reach of the LCR
- Compare BOR and USGS methods to estimate ET

Approach:
- Collect micrometeorological and soil data from instrumentation at multiple sites to calculate ET rates
- Based on vegetation density (not type), extrapolate ET rates using satellite imagery and remote sensing techniques
- Final report in 2006
Problem: Increasing growth is causing concern over water availability and sustainability - what is relation and potential impact to Carson River?

Purpose: Update water budgets for input to refined GW flow model with emphasis on estimating the effects of changes in land use (AG to urban)

Approach (completed in two phases):
- Phase I: Update water-budget components
- Phase II: Refine existing ground-water flow model to evaluate water-budget estimates, changes in land use, and effects of pumping on Carson River outflow (2006 – 2008)

Products:
- ET data: Maurer, in review
- Water budgets: Maurer, in review
Amargosa Desert

Problem: Concern that potential increases in GW pumping may effect water levels at Ash Meadows NWR and Devils Hole

Purpose: Evaluate (1) hydraulic connection between NWR, Amargosa Desert, and Pahrump Valley and (2) develop tool (model) to address DOI and Nye County concerns

Approach:
- Geologic data collection
- Develop finer-resolution ‘embedded Model’ in existing regional model for flow system
- Projected timeframe: 2006 - 2009
Background:

- BARCASS = Basin And Range Carbonate Aquifer System Study
- Present study mandated by Congress as “Lincoln County Conservation, Recreation, and Development Act of 2004” or ‘Lincoln County Land Act’ (short title)
- Funding of $6 million over 3-years provided by amendments to SNPLMA through BLM

Problem: Concern that water resources in White Pine County, NV, and adjacent areas in Utah, may be a target for water development. Uncertainty exists on water availability and sustainability, and geologic controls on GW flow

Purpose: Address specific tasks outlined in Congressional mandate concerning water quantity and flow characteristics in aquifers within designated study area.
Lincoln County Land Act: “The Secretary, acting through the United States Geological Survey, the Desert Research Institute, and a designee from the State of Utah shall conduct a study to investigate ground water quantity, quality, and flow characteristics in the deep carbonate and alluvial aquifers of White Pine County, Nevada, and any groundwater basins that are located in White Pine County, Nevada, or Lincoln County, Nevada, and adjacent areas in Utah.”
Lincoln County Land Act mandate:

- Delineating the extent and thickness of aquifers,
- Determining the volume of water stored in aquifers,
- The delineation of subsurface geologic structures controlling ground-water flow,
- Determining ground-water flow direction and gradients, and
- The distribution and rates of recharge and discharge

BARCASS Approach:

- Geology
 - shape, volume
- Recharge-Discharge
 - Springs, W/U, ET
- Ground-water flow
 - Represents regional flow system
- Geochemistry
 - Support task
- Data synthesis and evaluation
 - Water budgets
- Data dissemination
BARCASS Products:

- 3D visualization of aquifer system (EarthVision software)
 - Aquifer shape/volume of water
 - Geologic structure
- Basin Water Budgets
 - Map/rates of recharge
 - Map/rates of discharge
 - Map of regional GW flow w/geologic structure
- Report documenting results of study
 - Draft to Congress: June 2007
 - Final to Congress: Dec. 2007
- Unified monitoring networks – WL, Streams, Springs, WQ, ET
Additional information and data access on the Nevada Water Science Center website
http://nevada.usgs.gov/

Kimball Goddard, Director, USGS Nevada Water Science Center
(kgoddard@usgs.gov 775-887-7635)

Michael Strobel, Deputy Director, USGS Nevada Water Science Center
(mstrobel@usgs.gov 775-887-7604)

Daniel Bright, Studies Chief - Southern Nevada
USGS Nevada Water Science Center
(djbright@usgs.gov 702-564-4544)