MEMORANDUM

To: Lew Dodgion, Administrator/Dick Reavis, Bureau Chief

From: John Nelson, Water Permits Branch

Subject: Groundwater Study Requirements

Date: January 28, 1991

In putting together the groundwater study requirements the following steps should be followed:

- 1) Determine which groundwater basins may be subject to possible degradation from septic systems.
 - 1) I have developed a model using the basin groundwater storage and the surface recharge. This model creates a density limit for each basin that would trigger the need for the groundwater study. Based on the model the density limits for each basin are found in attachment 1.
 - 2) Once any portion of groundwater basin has an approved septic system density equal to or greater than the density noted in attachment 1 a groundwater study would be required.
- II) Prior to performing the study the area of the study must be determined by a hydrologist. The area of the study shall be determined using as a minimum the following survey requirements.
 - 1) Locate the area that is proposed for development using septic systems.
 - 2) Determine the area of the aquifer that will be impacted the most by the development of proposed septic system.
 - 3) Determine other source areas that will contribute contaminates to the areas identified above.

The area to be studied shall include the combination of the three areas mentioned above.

EXHIBIT G - WESTERN WATER Document consists of 10 pages. Entire Exhibit provided.

Meeting Date: 2-25-08

- III) Evaluate the existing water quality of the area to be studied and characterize the ground-water regime.
 - 1) Groundwater samples must be obtained for the shallow aquifers in each area. Also the groundwater elevations shall be reported.
 - 2) The groundwater shall be sampled for Nitrates, Chlorides, and Total Dissolved Solids.
- IV) A conceptual model shall be developed of the study area.
 - 1) The geologic and hydrologic setting of the area must be described. Existing reports such as the U.S.G.S. and Nevada Division of Water Resources should be referenced.
 - 2) Data from domestic wells and monitoring wells must be used to update existing information and to determine the present conditions.
 - 3) Geologic conditions must be evaluated to determine the influence on vertical and horizontal groundwater movement.
 - 4) The Mixing of recharge and septic effluent discharge must be evaluated.
- V) Next a numerical model must be developed to simulate the response of an aquifer both hydraulically and chemically to stresses on a set of contiguous blocks. The blocks shall be arranged in rows and columns which comprise the model grid. Each block in the grid shall be no longer than 500 feet by 500 feet. The input data for the model shall have the following parameters and may require additional parameters if necessary.
 - 1) Groundwater elevation data:
 - 2) Transmissivity and Storage Coefficient:
 - 3) Nitrate Concentration in the Groundwater:
 - 4) Contribution of existing septic systems:

- VI) The model shall then be run for the following simulations with a minimum time period of 50 years:
 - 1) Simulate for approved septic systems which have not been constructed to date.
 - 2) Simulate for proposed development with all previously approved septic systems.
 - In areas where the existing groundwater depth is less then 100 feet from the natural ground surface, perform a groundwater mounding analysis.

Attachment 1

POLICY FOR DETERMINATION OF MAXIMUM NUMBER OF RESIDENCES ON SEPTIC SYSTEMS PER SQUARE MILE TO BE PERMITTED WITHOUT REQUIRING A GROUNDWATER STUDY TO DETERMINE IMPACT ON GROUNDWATER QUALITY

I. INTRODUCTION

The maximum number of residences on septic systems which will be permitted per square mile without a prior groundwater study has been determined for each of the 232 hydrographic areas in the State of Nevada. Results of this determination are available from the Bureau of Water Pollution Control. Once this predetermined residence number is projected to be exceeded in a given area, a groundwater study will be required before the Nevada Division of Environmental Protection will approve additional septic systems. The groundwater study will be used to determine the impact of proposed septic facilities on existing water quality; approvals may be issued or denied on that basis.

II. THE GOVERNING EQUATION DEFINED

The premise used in determining the number of residences which will trigger the requirement for a groundwater study is based on the following two—part governing equation:

- > Total contamination equals contamination contributed to the total aquifer recharge plus contamination contributed to the groundwater in storage where:
- > The total contamination is proportional to the total number of residences on a septic system,
- > Groundwater in storage equals groundwater stored in upper 100' of saturated alluvium,
- > The volume available for assimilating (diluting) septage is the volume of the total aquifer recharge plus groundwater in storage, and
- > The total number of septic systems equals the number of septic systems affecting recharge volume plus the number of septic systems affecting storage volume.

Based on the above premise and on the assumptions and calculations outlined in Parts III, IV, and V below, the governing equation is defined as follows:

Number of septic systems = (0.2) (ppt recharge AF) + (.02) (storage AF) .392 AF/yr/residence

III. GENERAL ASSUMPTIONS AND DEFINITIONS

General assumptions and definitions inherent in the premise for the governing equation are listed below.

- 1. All contamination being considered is derived from septic systems; therefore, total contamination is related to the total number of residences on septic systems.
- 2. Total nitrogen has been selected as the constituent of primary concern with respect to impacts on groundwater quality from septic systems. This is based on known contaminants and groundwater studies done in Nevada to date.
- 3. An estimate of maximum residential flow is 350 gallon/s per day, which is equivalent to 0.392 acre—ft/year/residence.
- 4. Based on the EPA Design Manual for Onsite Wastewater Treatment and Disposal Systems, the concentration of total nitrogen which enters a leach field varies from 35 to 100 mg/l. As a conservative approach to groundwater protection, 100 mg/l total nitrogen was chosen as input to the leach field.
- 5. As a conservative estimate for use in the governing equation, the accepted limit of total nitrogen in groundwater used for drinking water is 10 mg/l.
- 6. All of the 100 mg/l of total nitrogen is available to be converted to nitrogen as nitrate. The drinking water standard for nitrate is 10 mg/l (Federal Safe Drinking Water Act).
- 7. The abbreviation for "precipitation" is defined as "ppt".
- 8. The abbreviation for "acre—feet per year" is defined as "AFY", and "acre—feet" is defined as "AF".

IV. ASSUMPTIONS AND CALCULATIONS RELATING TO THE NUMBER OF SEPTICS LIMITED BY RECHARGE CONSIDERATIONS (The First Factor in the Governing Equation)

A. Assumptions

- 1. A 50% decrease in concentration of septic effluent in the unsaturated zone was assumed (e.g., plant uptake, possible dilution, etc.). Therefore the possible concentration of the discharge from a septic system which could reach the groundwater was assumed to be 50 mg/l.
- 2. Precipitation recharge has a total nitrogen content of zero.
- 3. If precipitation recharge is assumed to have a nitrogen content of zero, then all nitrogen in recharge to groundwater must come from septic systems. If a septic system has an output of 50 mg/l, but 10 mg/l is the acceptable limit (IV.A.l), then the ratio of permissible septic recharge to precipitation recharge must be 1:5, or 0.20. Therefore, septic recharge equals (0.20) (precipitation recharge).

B. Calculations

In the determination of the first factor in the governing equation, which addresses the relationship of the total number of residences on septic systems to the contamination in the total recharge to the aquifer, the following relationships were employed:

```
Septic recharge = (number of septic systems) (output/septic) = (number of septic systems) (0.392 AFY);

Septic recharge/precipitation recharge = 1/5 = 0.20; and,

Septic recharge = (0.20) (precipitation recharge).
```

Consequently,

V. ASSUMPTIONS AND CALCULATIONS RELATING TO THE NUMBER OF SEPTICS LIMITED BY AQUIFER STORAGE CONSIDERATIONS (The Second Factor in the Governing Equation)

A. Assumptions

- 1. A Constant volume of aquifer storage is assumed, with negligible interbasin flow.
- 2. Groundwater in storage may have a background value of total nitrogen of 0-5 mg/l.
- 3. Because 10 mg/l is the "trigger" limit of nitrogen in groundwater used for drinking (111.5), and water in storage may have up to 5 mg/l background concentration (V.A.2 above), the maximum concentration of nitrogen which could be added to water in storage is 5 mg/l. Therefore, some number less than 5 mg/l must be used in the calculations to provide an adequate means of pollution prevention. In this instance, 2 mg/l was chosen as a limit for nitrogen added to groundwater in storage.
- 4. When calculating the effect of nitrogen from septic systems on the ground water in aquifer storage, no decrease in concentration of septic effluent in an unsaturated zone was assumed.
- 5. If a septic system has an output of 100 mg/l (III.4), but 2 mg/l is the acceptable concentration to be added to ground water in storage (V.A.3 above), then the ratio of permissible septic nitrogen to aquifer storage nitrogen must be 2:100, or 0.02. Therefore, septic nitrogen contributed to groundwater in storage = (0.02) (groundwater in storage).

B. Calculations

In the determination of the second factor in the governing equation, which addresses the relationship of the total number of residences on septic systems to the contamination groundwater in storage in the aquifer, the following relationships were employed:

Total nitrogen of groundwater in storage = nitrogen contributed from septic systems + background nitrogen of ground water in storage;

Concentrations of nitrogen from septic systems and background nitrogen concentrations are proportional to the respective associated fluid volumes;

Nitrogen contributed from septic systems = (number of septic systems) (output from septic systems) = (number of septic systems) (.392 AF);

Concentration of septic nitrogen/background concentration of groundwater in storage = 1/50 = 0.02; and,

Septic nitrogen contributed to groundwater in storage = (.02) (groundwater in storage).

Consequently,

The number of septics = (0.02) (AF storage) 0.392 AF

VI. HIGH AND LOW END LIMITATIONS

The values obtained for the number of residences on septic systems per square mile which will trigger the requirement for a groundwater study prior to approval of additional septic systems have been limited by NDEP on both the high and low ends. Most of the residence numbers fell between 50 and 200; consequently, 50 and 200 were chosen as end—member values. Basins with residence numbers of less than 50 were raised to 50; basins with very high numbers were scaled down to a limit of 200 residences per square mile. This was judged by NDEP to be a fair balance between maximizing groundwater protection in areas of high population pressures, and minimizing the burden on growth in under populated areas.

Basin	ρ	T	Area Name
1	131	Ť	Pueblo Valley
2	100	T	Continental Lake Valley
3	72	1	Gridley Lake Valley
4	50	1,	Virgin Valley
5	200	_	Sage Hen Valley
6	50	7	Guano Valley
7	200	_	Swan Lake Valley
8	51	Ť	Massacre Lake Valley
9	130	t	Long Valley
10	66	+	Macy Flat
11	50	+	Coleman Valley
12	86	T	
13	200	+	Mosquito Valley
	50	ļ.,	Warner Valley
14	50	Ļ	Surprise Valley Poyldon Valley
15	†	f	Boulder Valley Duck Lake Valley
16	62 50	ıs.	Duck Lake Valley
17	50	T	Pilgrim Flat
18	122	f	Painter Flat
19	133	╁	Dry Valley
20	85	+	Sano Valley
21	111	H	Smoke Creek Desert
22	144	┢	San Emidio Desert
23	51	\vdash	Granite Basin
24	68	+	Hualapai Flat
25	50	*	High Rock Lake Valley
26	96		Mud Meadow
27	89	-	Summit Lake Valley
28	136	H	Black Rock Desert
29	184	-	Pine Forest Valley
30	200	*	Kings River Valley
31	196	J.	Desert Valley
32	200		Silver State Valley
33	200		Quinn River Valley
34	200	1 1	Little Owyhee River Area
35	50		South Fork Owyhee River Area
36	101	1	Independence Valley
37	50		Owyhee Rîver Area
38	50	7	Bruneau River Area
39	200		Jarbidge River Area
40	50		Salmon Falls Creek Area
41	50	П	Goose Creek Area
42	116	П	Marys River Area
43	131		Starr Valley Area
44	119	7	North Fork Area
45	163	7	Lamoille Valley
46	113	1	South Fork Area
47	100	_	Huntington Valley
48	108	1	Dixie Creek-Tenmile Creek Area
49	103	4	Elko Segment
50	110	;	Susie Creek Area

Basin	ρ		Area Name
51	112		Maggie Creek Area
52	105		Marys Creek Area
53	117	T	Pine Valley
54	104	T	Crescent Valley
55	99		Carico Lake Valley
56	111	T	Upper Reese River Valley
57	105	T	Antelope Valley
58	104	T	Middle Reese River Valley
59	108	T	Lower Reese River Valley
60	102	†	Whirlwind Valley
61	109	\dagger	Boulder Flat
62	103	T	Rock Creek Valley
63	112	T	Willow Creek Valley
64	99	†	Clovers Area
65	98	t	Pumpernickel Valley
66	76	T	Kelley Creek Area
67	79	+	Little Humboldt Valley
68	98	+	Hardscrabble Area
69	78	T	Paradise Valley
70	74	H	Winnemucca Segment
71	81	+	Grass Valley
72	77	+-	Imlay Area
73		╁	
74	72 131	┢	Lovelock Valley White Plains
75	101	+	
76	181	╁	Bradys Hot Springs Area
77	116	\vdash	Ferniey Area
78	139	┢	Fireball Valley Granite Springs Valley
79	155	 	Kumiva Valley
80	143	-	Winnemucca Lake Valley
81	149	-	Pyramid Lake Valley
82	152		Dodge Flat
83	50	*	Tracy Segment
	99	+	
84 85		 	Warm Springs Valley
86	118 105		Spanish Springs Valley
87	120	\vdash	Sun Valley Travelses Mondows
88	170	 	Truckee Meadows Placeant Valley
89	200	*	Pleasant Valley Washoe Valley
90	0	⊢	Lake Tahoe Basin
		-	Truckee Canyon Segment
91 92	188		Lemmon Valley
92	138		***************************************
93	142		Antelope Valley
	87 es		Bedell Flat
95	85 50	*	Dry Valley
96	50		Newcomb Lake Valley
97	149		Honey Lake Valley
98	200	*	Skedaddle Creek Valley
99	70		Red Rock Valley
100	92		Cold Spring Valley

^{*} Adjusted for maximum of 200 and minimum of 50. ** In the Lake Tahoe Basin no septic systems are allowed.

	Basir	1 ρ		Ţ	Area Name
1	101	19	9		Carson Desert
	102	80)	T	Churchill Valley
	103	72	;	1	Dayton Valley
	104	200	0	Ţ.	Eagle Valley
	105	11	7	I	Carson Valley
Γ	106	111	I	T	Antelope Valley
Γ	107	123	7	Ī	Smith Valley
Γ	108	200)	*	Mason Valley
	109	80		T	East Walker Area
	110	97		Ι	Walker Lake Valley
	111	97			Alkali Valley
\mathbb{L}	112	51			Mono Valley
	113	67			Huntoon Valley
I	114	50		*	Teels Marsh Valley
L	115	50	6.7	*	Adobe Valley
L	116	94		. 40	Queen Valley
L	117	121			Fish Lake Valley
L	118	74		4	Columbus Salt Marsh Valley
L	119	88			Rhodes Salt Marsh Valley
	120	85			Garfield Flat
L	121	97	┙		Soda Spring Valley
	122	66			Gabbs Valley
L	123	50	1	*	Rawhide Flats
L	124	141	4	1	Fairview Valley
L	125	156	1	1	Stingaree Valley
L	126	83	1	1	Cowkick Valley
L	127	54	1	ļ	Eastgate Valley Area
L	128	139	4	4	Dixie Valley
L	129	172	4	1	Buena Vista Valley
L	130	116	4	1	Pleasant Valley
 	131	184	1	1	Buffalo Valley
 	132	60	1	7	ersey Valley
┞	133	96	+	┦	Edwards Creek Valley
	134	142	+	Т	mith Creek
	135	153	+	1	one Valley
	136	130	+	1	Monte Cristo Valley
	137	200	*	Т	lig Smoky Valley
	138	148	+	+	Grass Valley
	39	165	1	T	Sobeh Valley
	40	109	+	T	fonitor Valley
	41	144	+	1	alston Valley
	42	200	Ľ	1	Ikali Spring Valley
	43 44	121	H		layton Valley
		144	Н		ida Valley
	45 46	110	H		tonewall Flat
	47	152	1		arcobatus Flat
	48	179	H		old Flat
	49	178	H	_	actus Flat one Cabin Valley
	50	117 107	1		ttle Fish Lake Valley
	-v	10/	<u></u>	4.4	NIN 1:38 LARC + dHCY

	Basir	ιρ		Area Name
	151	143		Antelope Valley
	152	156		Stevens Basin
	153	200	١.,	* Diamond Valley
	154	107		Newark Valley
	155	114		Little Smoky Valley
	156	117		Hot Creek
	157	145		Kawich Valley
Ì	158	109		Emigrant Valley
I	159	88		Yucca Flat
ı	160	87		Frenchman Flat
ſ	161	148		Indian Springs Valley
Ī	162	163		Pahrump Valley
ı	163	154	٦	Mesquite Valley
Ī	164	133	7	Ivanpah Valley
Ī	165	171		Jean Lake Valley
ľ	166	120	1	Hidden Valley
ľ	167	136	1	Eldorado Valley
ı	168	146	1	Three Lakes Valley
Ī	169	113	1	Tikapoo Valley
r	170	163	1	Penoyer Valley
T	171	169	†	Coal Valley
r	172	166	†	Garden Valley
r	173	160	1	Railroad Valley
r	174	139	1	Jakes Valley
t	175	133	T	Long Valley
r	176	200	Ť,	Ruby Valley
r	177	188	Ť	Clover Valley
T	178	170	Ť	Butte Valley
	179	154	Ť	Steptoe Valley
Γ	180	161	1	Cave Valley
r	181	165	T	Dry Lake Valley
Γ	182	161	T	Delamar Valley
Γ	183	177	T	Lake Valley
Γ	184	152	T	Spring Valley
Γ	185	173		Tippett Valley
Γ	186	134	T	Antelope Valley
Γ	187	124	Γ	Goshute Valley
	188	172	Γ	Independence Valley
Г	189	138	Γ	Thousand Springs Valley
	190	50	*	
Γ	191	176	Γ	Pilot Creek Valley
Γ	192	105	Γ	Great Salt Lake Desert
	193	69		Deep Creek Valley
Γ	194	61		Pleasant Valley
<u> </u>	195	122		Snake Valley
	196	161	П	Hamlin Valley
	197	103	ľ	Escalante Desert
	198	168		Dry Valley
	199	200		Rose Valley
	200	187		Eagle Valley
_				

^{*} Adjusted for maximum of 200 and minimum of 50. ** In the Lake Tahoe Basin no septic systems are allowed.

Basin	ρ	T	Area Name
201	160	†	Spring Valley
202	200	١,	Patterson Valley
203	200		Panaca Valley
204	94	T	Clover Valley
205	147	T	Lower Meadow Valley Wash
206	88	T	Kane Springs Valley
207	168	T	White River Valley
208	133	Ī	Pahroc Valley
209	114	T	Pahranagat Valley
210	141	T	Coyote spring Valley
211	151	T	Three Lakes Valley
212	119	T	Las Vegas Valley
213	100	T	Colorado Valley
214	183	T	Piute Valley
215	122	T	Black Moutains Area
216	165		Garnet Valley
217	98	Γ	Hidden Valley
218	161		California Wash
219	141		Muddy River Springs Area
220	162		Lower Moapa Valley
221	146		Tule Desert
222	165		Virgin River Valley
223	97		Gold Butte Area
224	97		Greasewood Basin
225	200	*	Mercury Valley
226	94		Rock Valley
227	75		Fortymile Canyon
228	50	*	Oasis Valley
229	99	Ц	Crater Flat
230	200	*	Amargosa Desert
231	51		Grapevine Canyon
232	105		Oriental Wash