Monitoring of nitrate and other contaminants in groundwater in Pahrump Valley

USGS conducted pilot study in 2012

- 20 wells sampled
- Mostly domestic wells
- Objective was to identify the distribution and concentrations of nitrate in groundwater from domestic wells in Pahrump Valley

Pilot Study Results

- All wells had detectable nitrate
- 2 of 20 wells (10%) had nitrate concentrations above the USEPA drinking-water standard (10 mg/L)
- Most domestic wells with elevated nitrate concentrations were located in the southern part of the Pahrump Valley

Nitrate concentrations from pilot study

USGS Conducted Phase 2 Study 2014-2015

- Sampled an additional 27 new wells and re-sampled 4 wells from pilot study (31 total)
- Analyzed samples for major ions, nitrate, nitrogen isotopes, coliform bacteria, and waste water compounds
- Focused on southern part of Pahrump Valley

Phase 2 Results

- All wells had detectable nitrate
- 2 of 31 wells (6.5%) had nitrate concentrations above the USEPA drinking-water standard (10 mg/L)
- 2 additional wells (6.5%) had nitrate concentrations close to the USEPA drinking-water standard (> 9 mg/L)

Nitrate concentrations from phase 2 study

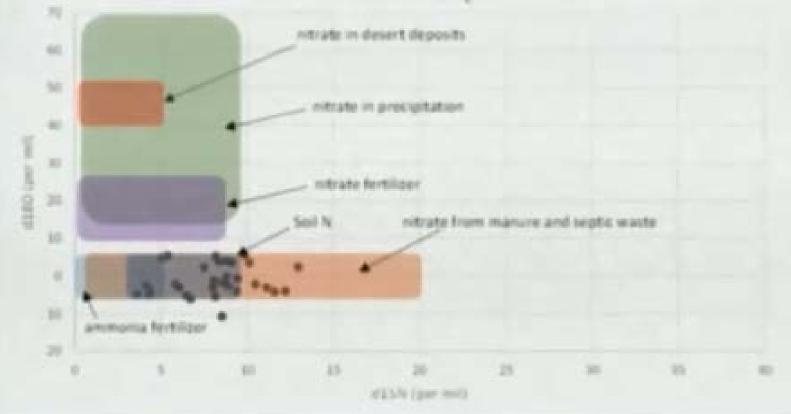
All Nitrate Results

- 47 unique wells sampled for nitrate
- 3 of 47 wells (6.4%) had nitrate concentrations above the USEPA drinking-water standard (10 mg/L)
- 2 additional wells (4.2%) had nitrate concentrations close to the USEPA drinking-water standard (> 9 < 10 mg/L)

Quality Control Check

Duplicate Nitrate Results

Well	Sample Date	Nitrate (mg/L)
1	12/10/2012	1.1
1	9/3/2014	1.6
2	7/2/2012	1.1
2	9/23/2014	1.01
3	10/15/2012	21.9
3	12/9/2014	22.7
4	6/25/2012	0.16
4	12/17/2014	0.15


What is the source of the nitrate?

- Nitrogen isotopes indicate:
 - septic system waste and manure are sources
 - natural soil N is also a source
 - nitrate and ammonia fertilizers are <u>not</u> sources
- Waster water compounds indicate a septic system source

Nitrogen Isotopes

Nitrate versus Oxygen Isotopes in Groundwater from Domestic Wells in Pahrump

Waste Water Compounds

- 42% of wells had detection of 1 or more waste water compounds
- Average concentration of nitrate only slightly higher in wells with waste water compounds
- Some compounds only have man-made sources; i.e., can not be from a natural source

Total Dissolved Solids

- Sometimes an indicator of waste water
- No correlation with nitrate concentrations
- However, 8 wells had concentrations of TDS > secondary drinking water standard of 500 mg/L
 - Secondary standard is mainly related to aesthetic and technical concerns

Chloride, Boron, and Fecal Coliform

- Sometimes an indicator of waste water
- No detections of fecal coliform
- No correlation of chloride or boron with nitrate concentrations

Bottom Line on Nitrate Sources

- Nitrogen isotopes strongly suggest sources from septic/manure and soil
 - mixing model needed to separate septic N from soil N
- Detections of waste water compounds support this interpretation
- Isotope signal indicates nitrate source is <u>not</u> from;
 - fertilizers
 - precipitation
 - natural desert deposits

What Are The Next Steps?

- Sample around RIBs to determine potential for these to be a nitrate source
- 2. Further examine the relation between nitrate and septic systems
- 3. Use mixing models to determine relative contributions of nitrate concentrations

- Sample around RIBs to determine potential for these to be a nitrate source
 - very difficult to separate septic waste from RIB waste
 - concentration of nitrate in water from RIBs may be an indicator
 - can determine other contaminants from RIBs (such as pharmaceuticals)

- 1 (cont.). Sample around RIBs to determine potential for these to be a nitrate source
 - a. sampling of groundwater upgradient and downgradent of RIBS
 - b. sampling of RIB effluent
 - samples analyzed for:
 - pharmaceuticals
 - hormones
 - priority pollutants
 - organohalogens

- 2. Further examine the relation between nitrate and septic systems
 - analyze relations between septic density, point sources (RIBs), groundwater levels, and groundwater flow directions with nitrate concentrations
 - these results could further separate septic source from RIB source

- 3. Mixing models to determine nitrate concentrations coming from different waste water sources
 - quantify the relative contributions of different waste water and soil nitrogen end-member sources to nitrate concentrations
 - these results could further separate septic source from RIB source

