

NEVADA DEPARTMENT OF TRANSPORTATION

2025 NEVADA STATE HIGHWAY PRESERVATION REPORT

State of Nevada
Department of Transportation

Tracy Larkin Thomason, P.E.
Director

Joe Lombardo
Governor

State Highway Preservation Report

Report to the 2025 Legislature
As Required by Nevada Revised Statute 408.203 (3)

January 2025
(Biennium 2023-2024)

Nevada Revised Statute 408.203(3)

The director of the Nevada Department of Transportation shall report to the Legislature by February 1 of odd-numbered years the progress being made in the Department's 10-year plan for the resurfacing of state highways. The report must include an accounting of revenues and expenditures in the preceding two fiscal years, a list of the projects which have been completed, including mileage and cost, and an estimate of the adequacy of projected revenues for timely completion of the plan.

State of Nevada
Department of Transportation

Vision

Lead Nevada in providing safe, reliable, and accessible transportation choices for all

Mission

Provide, operate, and preserve a reliable and sustainable transportation system that enhances safety, quality of life, and economic development through innovation and collaboration

Core Values

Respect, Integrity, Accountability, Communication, Teamwork, and Flexibility

Goals

- Improve Safety for the Traveling Public and NDOT Workforce
- Optimize Mobility
- Preserve Assets
- Create a Great Place to Work

TABLE OF CONTENTS

EXECUTIVE SUMMARY.....	1
PAVEMENT PRESERVATION SYNOPSIS.....	2
BRIDGE PRESERVATION SYNOPSIS.....	5
PAVEMENT PRESERVATION.....	7
INTRODUCTION.....	7
THE PAVEMENT MANAGEMENT SYSTEM.....	7
ROADWAY NETWORK INVENTORY	7
PAVEMENT CONDITION RATING SYSTEM	11
PAVEMENT MAINTENANCE AND REHABILITATION STRATEGIES	15
REVENUE AND EXPENDITURE.....	17
COSTS OF CONSTRUCTION.....	23
PAVEMENT CONDITION.....	25
PAVEMENT CONDITION GOAL	40
TRANSPORTATION ASSET MANAGEMENT PLAN CONSISTENCY	42
ADEQUACY OF PAVEMENT PRESERVATION FUNDS	44
PROGRESS IN THE 10-YEAR PLAN FOR RESURFACING OF STATE HIGHWAYS	46
PAVEMENT PRESERVATION SUMMARY.....	48
BRIDGE PRESERVATION	50
INTRODUCTION.....	50
THE BRIDGE MANAGEMENT SYSTEM.....	50
BRIDGE INVENTORY	50
BRIDGE CONDITION REPORTING.....	50
BRIDGE CONDITION OVER TIME	61
THE COST OF BRIDGE CLOSURE FOR OWNERS.....	62
PROJECT PRIORITIZATION	63
BRIDGE PRESERVATION FUNDING	63
BIENNIAL EXPENDITURES FOR FISCAL YEARS 2023 TO 2024	64
PRESENT FUNDING VERSUS NEEDED FUNDING	64
BRIDGE PRESERVATION ACTION PLAN	65
BRIDGE PRESERVATION SUMMARY.....	65

LIST OF FIGURES

FIGURE E1. Future State-maintained Roadway Network Funding Alternatives	4
FIGURE 1. Roadway Network Inventory by Road Prioritization Categories	9
FIGURE 2. PSI Rating System and Corresponding Pavement Condition.....	12
FIGURE 2. PSI Rating System and Corresponding Pavement Condition (Continued)	13
FIGURE 2. PSI Rating System and Corresponding Pavement Condition (Continued)	14
FIGURE 3. Timing for Repair Strategies Based on PSI Rating System.....	16
FIGURE 4. Timing for Proactive and Reactive Pavement Rehabilitation Strategies	17
FIGURE 5. Funding Sources and Construction Expenditures.....	18
FIGURE 6. Rehabilitation Project Locations.....	22
FIGURE 7. National Highway Construction Cost Index (NHCCI).....	24
FIGURE 8. Roadway Network Inventory Identified by Present Serviceability Index (PSI).....	26
FIGURE 9. Road Prioritization Category 1 by Present Serviceability Index (PSI).....	27
FIGURE 10. Road Prioritization Category 2 by Present Serviceability Index (PSI).....	28
FIGURE 11. Road Prioritization Category 3 by Present Serviceability Index (PSI).....	29
FIGURE 12. Road Prioritization Category 4 by Present Serviceability Index (PSI).....	30
FIGURE 13. Road Prioritization Category 5 by Present Serviceability Index (PSI).....	31
FIGURE 14. Average PSI and Expenditures for Roadway Network	34
FIGURE 15. Average PSI and Expenditures for Road Category 1	35
FIGURE 16. Average PSI and Expenditures for Road Category 2	36
FIGURE 17. Average PSI and Expenditures for Road Category 3	37
FIGURE 18. Average PSI and Expenditures for Road Category 4	38
FIGURE 19. Average PSI and Expenditures for Road Category 5	39
FIGURE 20. Percentage of Miles per Road Category and Pavement Condition.....	41
FIGURE 21. Future State-maintained Roadway Network Funding Alternatives.....	47
FIGURE 22. Structurally Deficient Bridges	53
FIGURE 23A. Locations of Structurally Deficient Bridges.....	54
FIGURE 23B. Locations of Structurally Deficient Bridges.....	55
FIGURE 23C. Locations of Structurally Deficient Bridges.....	56
FIGURE 23D. Locations of Structurally Deficient Bridges.....	57
FIGURE 23E. Locations of Structurally Deficient Bridges.....	58
FIGURE 23F. Locations of Structurally Deficient Bridges	59
FIGURE 24. Nevada Bridge Conditions	60
FIGURE 25. Bridge Age	61
FIGURE 26. Structurally Deficient NDOT Bridges over Time	61
FIGURE 27. Structurally Deficient Non-NDOT Bridges over Time	62

LIST OF TABLES

TABLE 1. NDOT's Road Prioritization Categories	8
TABLE 2. Comparison of the USDOT and NDOT Road Classification Systems	10
TABLE 3. Advertised Pavement Repair Work for Fiscal Years 2023 and 2024	19
TABLE 4. List of Rehabilitation Projects Advertised in Fiscal Year 2023	20
TABLE 4. List of Rehabilitation Projects Advertised in Fiscal Year 2023 (Continued).....	21
TABLE 5. List of Rehabilitation Projects Advertised in Fiscal Year 2024	21
TABLE 6. PSI Pavement Condition by Road Prioritization Category	25
TABLE 7. District Pavement Condition by Present Serviceability Index (PSI).....	32
TABLE 8. County Pavement Condition by Present Serviceability Index (PSI)	33
TABLE 9. Pavement Condition Versus Established Goal by Road Category.....	40
TABLE 10. Transportation Asset Management Plan Investment Consistency	43
TABLE 11. Average Investment of Preservation Funds by Category.....	44
TABLE 12. Funding Necessary to Meet and Maintain Fair or Better Targets.....	45
TABLE 13. Bridge Expenditures in Fiscal Years 2023 and 2024	64

EXECUTIVE SUMMARY

The Nevada Department of Transportation (NDOT) publishes the State Highway Preservation Report biennially to summarize the work performed and anticipated workload required to preserve the state-maintained roadway network and bridge infrastructure assets. This report provides the Nevada Legislature with 2023-2024 information that can be used to determine whether future revenues are adequate to maintain and preserve the infrastructure assets at an acceptable level.

NDOT is responsible for maintaining 5,396 centerline miles (13,810 lane miles) of roads and 1,239 bridges. Although the state-maintained roadway network consists of only 14% of the roads in Nevada, the network is overwhelmingly important as 49% of all automobile traffic, 71% of all truck traffic, and 81% of all heavy truck traffic travel on these roads.

Transportation infrastructure funding, including highway preservation funding, is in short supply nationwide including Nevada. Article 9, Section 5 of the Nevada constitution created the State Highway Fund with proceeds from licensing, registration, and other charges with respect to the operation of any motor vehicle upon any public highway in this state plus excise taxes on fuel minus administrative costs. This fund is reserved exclusively for the construction, maintenance, and repair of public highways in Nevada. The Nevada Department of Transportation (NDOT) is funded primarily with a mixture of fuel taxes, which was last increased in 1992, and related user fees as noted above plus federal aid and typically does not utilize any general funds. A safe, efficient and reliable roadway network is important, and it promotes the general welfare of all the people in the State of Nevada. Adequate preservation funding is necessary since deteriorated roads and bridges can impede the general economic and social progress of the State. Investment in infrastructure will boost market economy, advance travel and trade, and provide a legacy from which future generations can prosper.

Pavement and bridge preservation for fiscal years 2023 and 2024 were analyzed and presented in this report. Major findings and conclusions are summarized in the Pavement and Bridge Preservation Synopsis sections.

PAVEMENT PRESERVATION SYNOPSIS

NDOT's Pavement Management System (PMS) is used to help make decisions on how best to maintain and improve the condition of the entire state-maintained roadway network. This network consists of 5,396 centerline miles (13,810 lane miles) of roadway that is classified into five separate road prioritization categories. These road categories are primarily based on average daily traffic (ADT) and federal guidelines for highway classification descriptions, and they share similar rates of deterioration and require similar timing for maintenance and preservation repair work. The pavement in each road prioritization category is objectively rated and quantified using the Present Serviceability Index (PSI) pavement condition rating system. This rating system is divided into six sections that correspond to pavement in very good, good, fair, mediocre, poor, and very poor or failed condition.

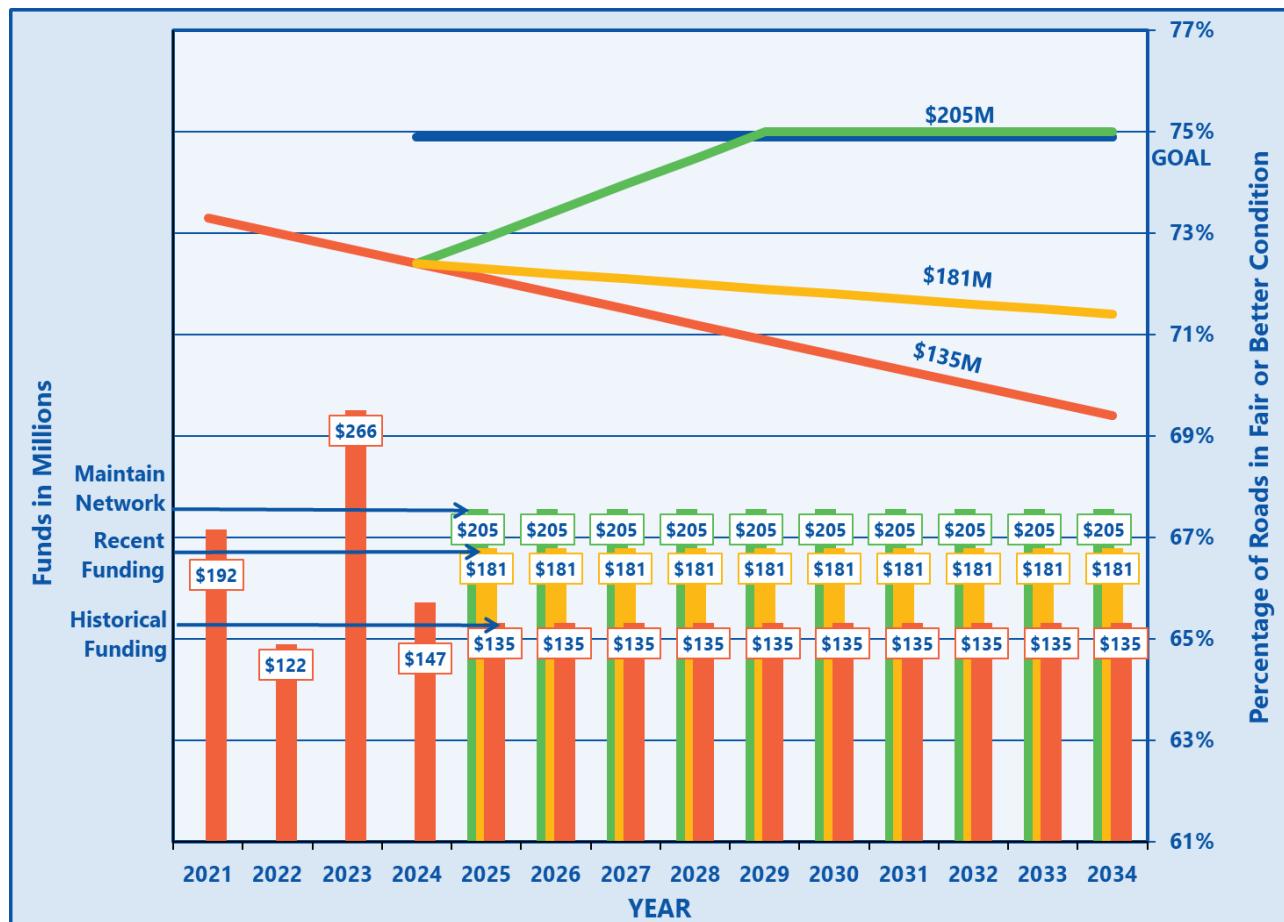
Various repair strategies are implemented to improve pavement condition. Maintenance repair strategies include work such as chip seals, filling potholes, and patching. Preservation mostly involves thin overlays and mill and fills used to maintain surface quality. Rehabilitation repair strategies include plant-mix overlays, mill and fills, and cold-in-place recycling with a plant-mix overlay. Reconstruction usually involves a roadbed modification followed by the placement of new bound layers. The cost and construction timing for the various repair strategies can be significantly different and are contingent on the pavement condition at the time of the repair. Significant cost savings are possible when pavement is proactively treated while in fair condition as compared to reactively reconstructed in very poor condition. Repairing pavement in very poor or failed condition requires major reconstruction that costs significantly more than the less invasive techniques that can be used when pavement is in fair or better condition.

\$507.3 million was invested for maintenance and rehabilitation repair work in fiscal years 2023 and 2024. This expenditure included \$206.4 million investment of state funds, \$300.5 million investment of federal funds, and \$0.35 million investment of funds from other sources. More than \$483 million of repair work was contracted out to private contractors and \$24 million of repair work was performed by NDOT Maintenance personnel. The \$483.2 million of contracted repair work restored 704 centerline miles (1,717 lane miles) of pavement to acceptable condition levels. Maintenance repair work was performed on 461 centerline miles (975 lane miles) and rehabilitation repair work was constructed on 243 centerline miles (742 lane miles).

The PSI pavement condition rating system was used to determine if long-term pavement preservation expenditures were adequate to maintain or improve the roadway network to acceptable condition levels. Results show that while historical funding has usually not been adequate, condition has been generally stable. However, without consistent increased funding, it is anticipated that the overall average condition of the state-maintained roadway network will slowly deteriorate but remain in fair condition for the near future.

In 2020, the current PSI related performance goals were developed to represent what is achievable and provide levels of service appropriate for each category. The current goal is 95% fair or better for category 1, 90% for category 2, 85% for category 3, 75% for category 4, and 50% for category 5. Categories 1, 2, and 3 currently meet or exceed these revised goals. Road prioritization categories 4 and 5 roads fail to meet the established pavement condition goal.

An estimate of the adequacy of projected spending for the timely completion of the resurfacing plan was ascertained. The recent spending, though higher than projected requirements, is still not being distributed adequately to meet the established performance goal. Projected expenditure of \$205 million, appropriately distributed among the categories, is required each year to maintain the roadway network at acceptable condition levels consistent with the goals.


The progress in the 10-year plan for resurfacing of state highways was examined and different budget scenarios were investigated. The investigation included the comparison of the predicted percentage of roads in fair or better condition for years 2025 through 2034 with budget scenarios of \$205 million, \$181 million, and \$135 million per year expenditures for pavement preservation repair work.

- The first budget scenario included an average \$205 million per year expenditure for pavement preservation repair work. This budget scenario represents the necessary spending level, which will maintain a consistent pavement condition of 75% of roads in fair or better condition and allow each category to meet or exceed the established percent fair or better target.
- The second budget scenario is an average of \$181 million per year for preservation work. This budget is the average spending for the last four years, which represents an increase

over historical levels, but falls short of the required spending. This scenario would result in the average percentage of roads in fair or better condition deteriorating from 72.4% in the year 2023 to approximately 71% in the year 2034.

- The third budget scenario consisted of an average \$135 million per year expenditure for pavement preservation repair work. This budget is the average expenditure for pavement preservation work from the last ten years (2015 through 2024). This budget scenario would result in the average percentage of roads in fair or better condition deteriorating from 72.4% in the year 2023 to approximately 69% by the year 2034.

FIGURE E1 illustrates the comparison of the predicted percentage of roads in fair or better condition spending either \$205 million, \$181 million, or \$135 million per year expenditures for pavement repair work.

FIGURE E1. Future State-maintained Roadway Network Funding Alternatives

BRIDGE PRESERVATION SYNOPSIS

The Nevada Department of Transportation is responsible for inspecting and reporting the condition of all the bridges open to the public in Nevada, except bridges on federal lands. There are currently 2,153 public bridges in the NDOT bridge inventory. NDOT maintains 1,239 bridges; county and city governments maintain 842 bridges; other local agencies maintain 48 bridges; private entities maintain 10 bridges; railroad maintains 6 bridges; and other state agencies maintain 8 bridges. The bridge inventory data, together with other factors, allow NDOT to identify preservation priorities and monitor the state's effort to maintain bridges in a structurally sound, functional, and safe condition.

Data in the NDOT bridge inventory is collected in accordance with the National Bridge Inspection Standards (NBIS) and is reported to the National Bridge Inventory (NBI). For each bridge, the condition rating is determined for three primary elements: deck, superstructure, and substructure. Bridge-sized culverts have a single, independent rating. NBI general condition ratings are assessed on a scale that ranges from 0 (failed condition) to 9 (excellent condition). The lowest of the three ratings for bridges, or the single rating for culverts, is used to represent the overall condition of the structure. Ratings of 7 or better, represent a bridge that is in good condition and ratings of 5 or 6 represent a bridge in fair condition. If any of the condition ratings are 4 or below, the bridge is in poor condition. A structure deemed to be in poor condition is classified as Structurally Deficient (SD).

Structurally Deficient bridges are not necessarily unsafe or dangerous. Rather, these bridges become a priority for corrective measures, and may be posted to restrict the weight of vehicles using them. If a deficiency is determined to be severe, or the load carrying capacity is extremely low, the bridge would be closed to protect the travelling public. Of the 1,239 bridges maintained by NDOT, only 7 or 0.6% are considered to be Structurally Deficient.

Currently, Nevada bridge conditions compare very favorably to the bridge conditions in many other states, even though more than half of NDOT's bridges are more than 40 years old. However, since older bridges generally have a useful service life of 50 to 75 years, many of NDOT's bridges will require more frequent rehabilitation and replacement in the near future.

When bridges deteriorate and require closure, the resulting detours can be very disruptive to traffic. In both rural and urban bridge closures, the user costs associated with detours can often be quite significant until the bridge is reconstructed or repaired. The importance of bridge maintenance and rehabilitation cannot be overemphasized.

The Nevada Department of Transportation spent a total of approximately \$27 million in fiscal years 2023 and 2024 on bridge preservation while spending on bridge preservation for the previous two years was approximately \$17 million total. An increasing investment in bridge preservation funding is being implemented to address the anticipated growing rehabilitation and replacements needs of the state's aging inventory. The Department has committed to provide additional bridge preservation funding and, through the One Nevada Plans, looks to prioritize and utilize this investment in the most efficient way possible, to preserve the service-life of structures state-wide.

While the need for preservation funding increases every year as the bridge inventory continues to grow, a much greater funding deficiency is likely to occur because of the age of NDOT's bridges. Many of NDOT's bridges are approaching the end of their service life and the need for bridge replacement funds is expected to increase greatly over the next decade.

Since NDOT already has 653 bridges over 50 years old, the current practice of replacing approximately 3 bridges a year is a replacement rate of 0.5% of the bridges over 50 years old. A replacement rate of 2% a year is necessary to replace the bridges over 50 years old before they reach 100 years old. If a 2% annual replacement rate is reached in ten years and is maintained for another ten years, the number of bridges over 50 years old will begin to stabilize. Twenty years from now, NDOT would have approximately 730 bridges over 50 years old and would be replacing 16 bridges each year.

PAVEMENT PRESERVATION

INTRODUCTION

This report summarizes the Nevada Department of Transportation's (NDOT's) effort to preserve the state-maintained roadway network. The roadway network is vital and one of the state's most valuable assets. Although the roadway network consists of only 14% of the roads in Nevada, approximately 50% of all traffic and 81% of all heavy trucks travel on state-maintained roads. The following discussion explains how NDOT uses its available pavement preservation funds to maintain and rehabilitate the roadway network.

THE PAVEMENT MANAGEMENT SYSTEM

The Pavement Management System (PMS) includes the entire inventory of the state's existing pavement assets and condition. The primary objective of the PMS is to provide information that enables users to make informed decisions about how to maintain and improve the condition of the roadway network while maximizing pavement performance through the practical use of available funds. NDOT's management of the pavement inventory allows maintenance and rehabilitation repair work to be prioritized in an objective and systematic manner. The PMS improves the efficiency of decision making, provides assessment on the consequences of decisions through comparative analysis, and ensures consistency of network and project level activities and results.

ROADWAY NETWORK INVENTORY

The state-maintained roadway network consists of 5,396 centerline miles (13,810 lane miles) of roads. Centerline miles indicate the length of the road, regardless of the number of lanes within each mile. So that the network may be more easily managed, it is classified into five separate road prioritization categories. These road categories are primarily based on average daily traffic (ADT) and federal National Highway System (NHS) designation. Because traffic levels are a primary input in pavement design, each road prioritization category consists of pavements that share similar rates of deterioration and require similar timing for maintenance and preservation repair work.

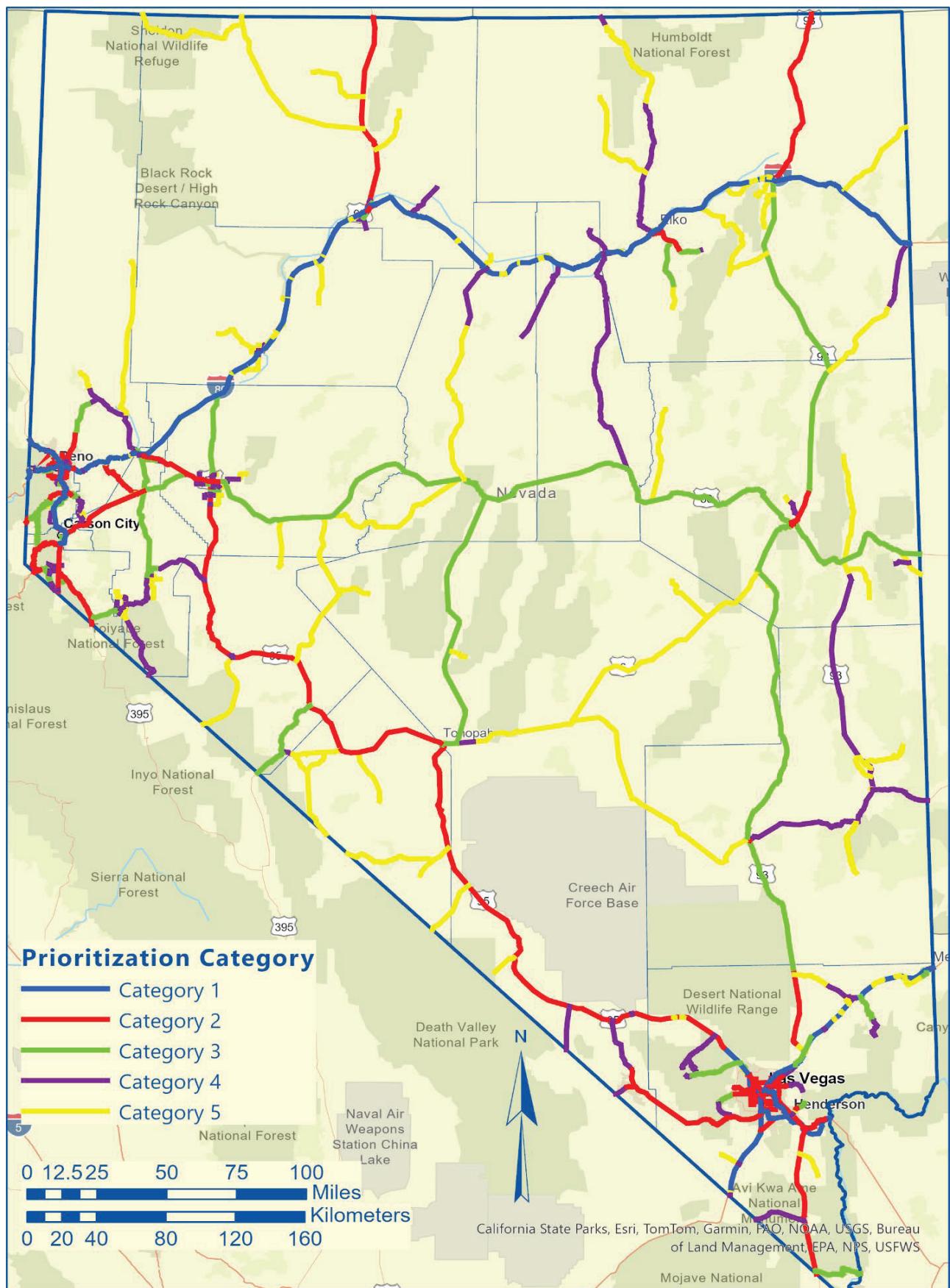

TABLE 1 lists the five road prioritization categories and their corresponding descriptions. Also listed are several examples of easily recognized roads throughout the state to assist with relating these roads to the assigned categories and descriptions.

TABLE 1. NDOT's Road Prioritization Categories

Road Prioritization Category	¹ Description	Examples
1	Controlled Access Roads	IR015, Clark County IR580, Washoe County IR080, Elko County
2	ADT \geq 5,000 NHS ADT \geq 1,250	SR146, St. Rose Parkway, Clark County US050, Lincoln Highway, Carson City SR659, McCarran Blvd, Washoe County
3	1250 \leq ADT $<$ 5000 NHS ADT $<$ 1250	SR318, Sunnyside Road, Nye County SR028, Lake Tahoe Area, Douglas County US050, Lincoln Highway, Lander/Eureka County
4	250 \leq ADT $<$ 1250	SR373, Death Valley Jct Road, Nye County SR319, Panaca Road, Lincoln County SR278, Eureka-Carlin Road, Eureka County
5	ADT $<$ 250	SR140, Denio-Adel Road, Humboldt County SR375, Warm Springs Road, Lincoln/Nye County SR722, Carrol Summit Road, Churchill/Lander County

¹ADT is an acronym for "Average Daily Traffic." The PMS includes the ADT data, as provided by NDOT's Traffic Division, for every road in the state-maintained roadway network.

FIGURE 1 is a map that highlights the state-maintained roadway network inventory identified by NDOT's five road prioritization categories.

FIGURE 1. Roadway Network Inventory by Road Prioritization Categories

There are numerous methods used to classify roads. The United States Department of Transportation (USDOT) classifies roads for national purposes, while state departments of transportation classify road inventories using methods for state needs and the needs of the individual PMS systems employed. The USDOT system focuses mainly on the purpose of the route, while the NDOT system is largely based on traffic volumes and NHS designation. Despite these differences, the two systems are generally compatible.

TABLE 2 compares the USDOT's classification methodology with NDOT's classification methodology, which will allow individuals familiar with national classification terminology to more easily understand the associated NDOT road prioritization categories.

TABLE 2. Comparison of the USDOT and NDOT Road Classification Systems

USDOT's Functional Classification Category	Description	Examples	NDOT's Road Prioritization Category
1	Interstate	Interstates are the highest classification of arterials and were designed and constructed with mobility and long-distance travel in mind.	1
2	Principal Arterial – Other Freeways and Expressways	The roads in this classification have directional travel lanes and are usually separated by some type of physical barrier. Access and egress points are limited to on-ramp and off-ramp locations, or a very limited number of at-grade intersections.	1 and 2
3	Principal Arterial - Other	The roads in this classification serve major centers of metropolitan areas, provide a high degree of mobility, and can also provide mobility through rural areas.	2 and 3
4	Minor Arterial	Minor arterials link cities, larger towns, and other traffic generators such as resorts.	3, 4, and 5
5	Major Collector	Major collector roads provide service to any county seat not on an arterial route, to the larger towns not directly served by higher systems, and to traffic generators of equivalent intra-county importance such as shipping points, parks, important mining, agricultural areas, and more.	4 and 5
6	Minor Collector	Minor collectors distribute and channel trips between local roads and arterials, usually over a distance of less than three-quarters of a mile.	5
7	Local	Local roads are not intended for use in long distance travel, except at the origin or destination end of the trip, due to their provision of direct access to abutting land.	5

*Nevada's state-maintained roadway network serves the broad expanse within the state's boundaries. While all USDOT classifications are represented in the NDOT system, 6 and 7 are infrequent.

PAVEMENT CONDITION RATING SYSTEM

To help manage pavements so that they can provide a smooth, comfortable, and safe ride, it is useful to have a pavement condition rating system that includes all attributes important to travelers. These attributes include travelers' responses to motion and appearance as demonstrated by a smooth riding surface that is without cracking, rutting, patching, or potholes. NDOT uses a pavement condition rating system called the Present Serviceability Index (PSI) to objectively measures all these important attributes.

The PSI pavement condition rating system uses a value that is calculated using pavement roughness measurements and mathematical formulas that quantify pavement distresses such as cracking, rutting, and patching. These measurements and formulas are combined and standardized into an objective rating scale numbered from zero to five. Pavement rated from four to five is interpreted as pavement in new or very good condition with a smooth surface that is without distress or irregularities. Pavement rated less than two is interpreted as pavement in very poor or failed condition with the roughest of surface conditions and no longer navigable at the posted speed limit. The PSI pavement condition rating system is used to quantify the pavement condition for each road within the state-maintained roadway network.

FIGURE 2 demonstrates how the PSI pavement condition rating system is divided into six condition levels that correspond to pavement in very good, good, fair, mediocre, poor, and very poor or failed condition. Descriptions include photographs of what pavement would typically look like in each condition as well as a discussion of the various stages of disrepair as pavement deteriorates over time.

Pavement Condition	PSI Rating Scale	Description of Pavement Condition
Very Good	5.00 to 4.00	<p>Pavement in very good condition has an excellent, very smooth ride quality and is without any pavement distress. Pavement is in new condition.</p>
Good	3.99 to 3.50	<p>Pavement in good condition has a very smooth ride quality and begins to show minor distresses that are typically environmental rather than load related. Distresses include minor non-wheelpath longitudinal and transverse cracks as well as minor surface raveling.</p> <p>Pavement in good condition can especially benefit from preventive maintenance such as crack sealing and surface treatments such as chip, slurry, and scrub seals. Surface treatments impede pavement deterioration and protect the pavement structure from water infiltration and weathering.</p>

FIGURE 2. PSI Rating System and Corresponding Pavement Condition

Pavement Condition	PSI Rating Scale	Description of Pavement Condition
Fair	3.49 to 3.00	<p>Pavement in fair condition has a good ride quality except noticeable environmental distress has developed. Non-wheelpath longitudinal and transverse cracks are frequent. There is light surface oxidation and weathering. Structural distress in the wheelpath in the form of ruts and fatigue cracks begin to occur.</p> <p>Pavement in fair condition is a candidate for a surface treatment such as micro-surfacing or double chip seal, and possibly a two inch overlay. An overlay applied on pavement in this condition will prevent the formation of more severe structural distress.</p>
Mediocre	2.99 to 2.50	<p>Pavement in mediocre condition has a barely acceptable ride quality and has accumulated significant environmental and structural distresses. Pavement has non-wheelpath longitudinal cracking and transverse cracks so closely spaced that block cracks develop. Ruts and fatigue cracks in wheelpath are present.</p> <p>Pavement in mediocre condition is candidate for three inch or thicker overlays and may require patching before the new overlay is placed. Pavement structural deterioration is evident.</p>

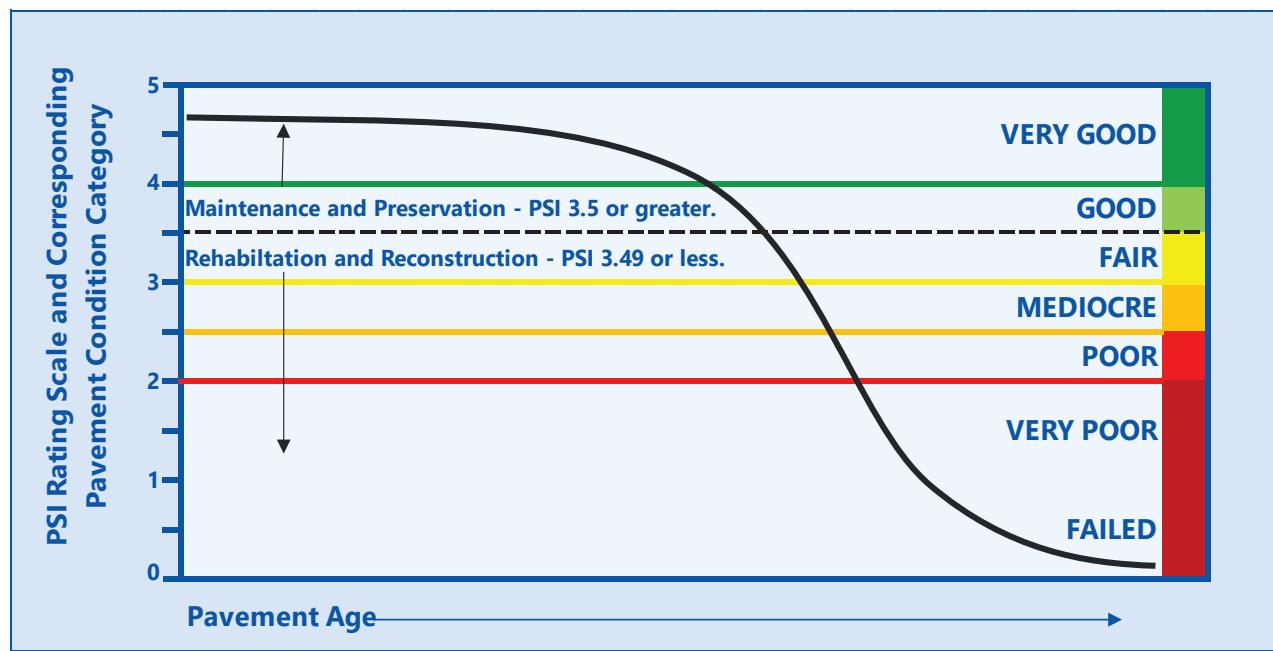
FIGURE 2. PSI Rating System and Corresponding Pavement Condition (Continued)

Pavement Condition	PSI Rating Scale	Description of Pavement Condition
Poor	2.49 to 2.00	<p>Pavement in poor condition has a poor ride quality and has accumulated large amounts of environmental and structural-related distresses. The non-wheelpath longitudinal and transverse cracks are severe. The surface is weathered, rutted, and fatigue cracks are widespread.</p> <p>Lower volume roads are candidates for thick overlays or cold in-place recycling (CIR) and overlay repair. Higher volume roads will require reconstruction such as a full-depth recycling and overlay repair.</p>
Very Poor or Failed	< 2.00	<p>Pavement in very poor condition has a very poor ride quality and has accumulated significant environmental and structural distresses. The surface is pitted and there are wide non-wheelpath longitudinal and transverse cracks. Networked, spalled fatigue cracks and deep ruts are prevalent. The deterioration is so advanced potholes are frequent. The road is typically no longer navigable at the posted speed limit.</p> <p>Pavement in this condition requires constant maintenance activity such as patching and filling potholes. Citizen complaints are common. This pavement always requires full-depth reconstruction and recycling the road may not be an option.</p>

FIGURE 2. PSI Rating System and Corresponding Pavement Condition (Continued)

PAVEMENT MAINTENANCE AND REHABILITATION STRATEGIES

Pavement service life is a function of many parameters. The parameters of most consequence are the smoothness of the road and the amount of heavy truck loads that the pavement experiences. New pavement has excellent characteristics such as a very smooth ride without any surface distress or defects. Relatively little funding is necessary for new pavement maintenance. However, the smooth ride will gradually become rough due to cracks, distress, or other types of defects as the pavement deteriorates. Therefore, it becomes necessary to spend an increasing amount of funds in order to maintain or rehabilitate the pavement to an acceptable condition level as the pavement deteriorates over time. The types and extents of distress or defects, along with the severity of the pavement roughness, determine what types of repair strategies are required for maintenance and rehabilitation repair work.


Pavement repair strategies are classified into four major categories: Maintenance, Preservation, Rehabilitation, and Reconstruction.

- **Maintenance.** This category includes repairs that address surface deterioration, but that do not improve the pavement's ability to carry traffic loads. This includes fog seals, crack sealing, chip seals, slurry seals, and full and partial depth patching.
- **Preservation.** Used more specifically when describing pavement treatments, preservation includes those treatments applied to roads in good condition in order to prevent further degradation and maintain a high level of service. This category mostly involves thin overlays and mill and fills used to maintain surface quality.
- **Rehabilitation.** This category includes more substantial repairs that are applied when the pavement is in fair or worse condition to repair the structurally deficient section and provide a new surface that improves the pavement's ability to carry traffic loads. Typical rehabilitation treatments include plant-mix overlays, mill and fills, and cold in place recycling with a plant mix overlay.
- **Reconstruction.** Reconstruction repairs are applied to roads that are damaged to the point where they require replacement or recycling of the bound layers, and potentially the base layers. Typically, reconstruction involves a roadbed modification followed by the placement of new bound layers.

For simplicity, in most other sections of this report, the term rehabilitation is used to include all preservation, rehabilitation, and reconstruction work.

FIGURE 3 exhibits the construction timing for pavement repair strategies based on the PSI pavement condition rating system. Maintenance and preservation repair strategies are typically applied when a pavement has a PSI rating of 3.50 or higher. Rehabilitation and reconstruction repair strategies are commonly constructed when a pavement has a PSI rating of 3.49 or less.

It should be noted that the repair strategies explained herein are general policies and that the construction timing varies for each road prioritization category. For example, due to financial constraints, a category 5 road may receive a maintenance treatment such as a chip seal around a PSI rating of 2.5. Conversely, a category 1 road may receive a rehabilitation treatment while still in good condition in order to proactively maintain the higher performance standards present on these routes.

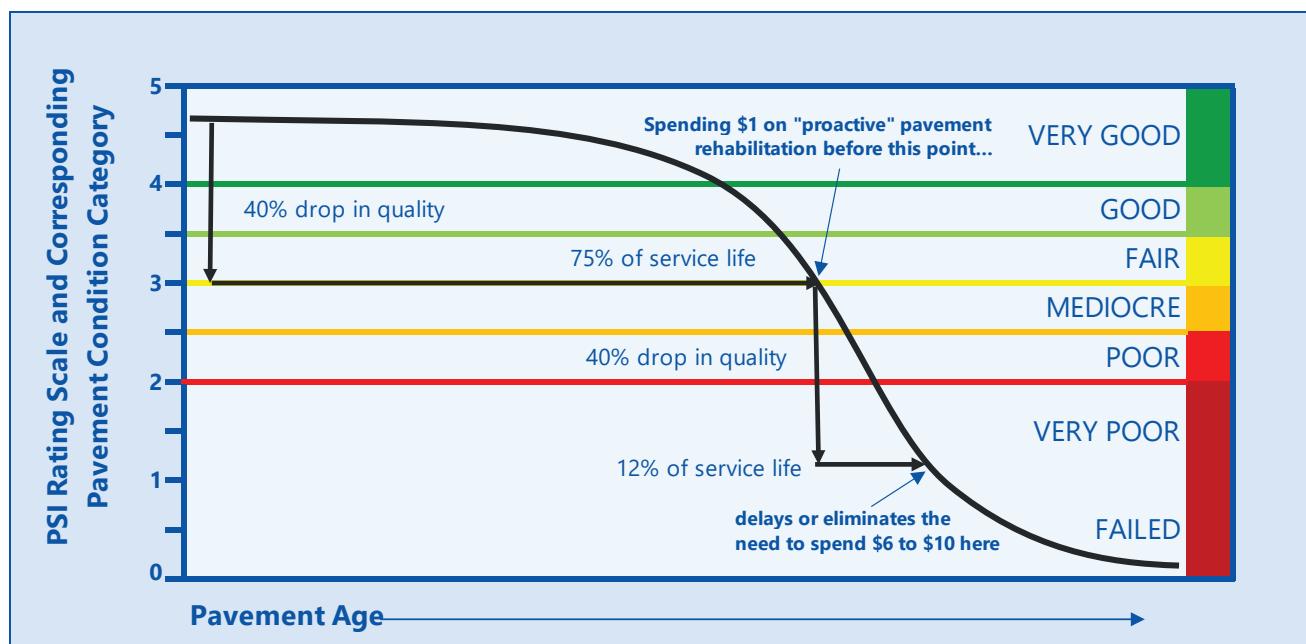
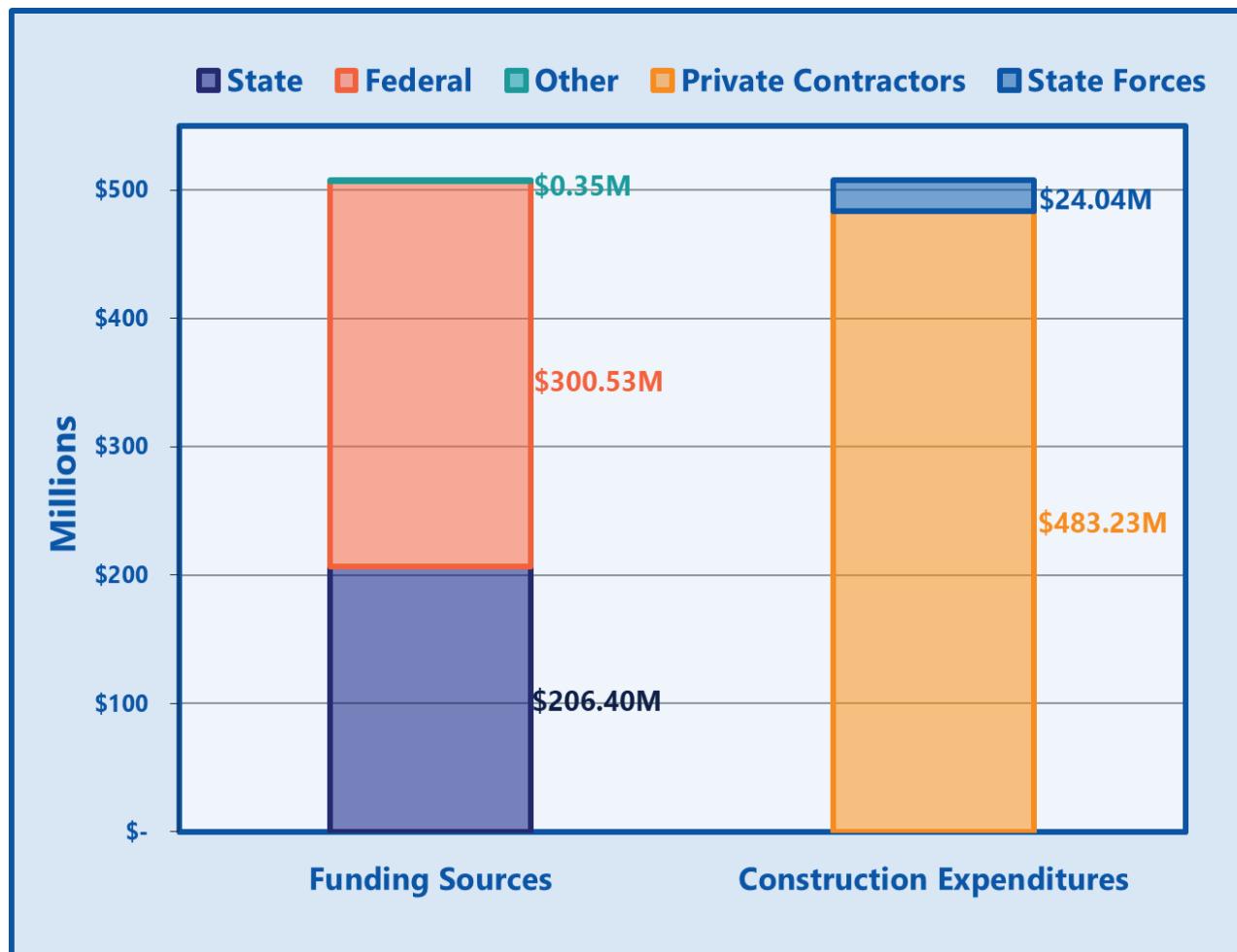


FIGURE 3. Timing for Repair Strategies Based on PSI Rating System

The funds needed for the repair work required to improve roads to acceptable condition levels when pavement is in poor or worse condition are far greater than the funds needed for the repair work when pavement is in fair or better condition. FIGURE 4 shows the timing for the cost saving between various repair options based on the PSI pavement condition rating system. Project

expenditures will significantly increase when pavement is allowed to deteriorate from fair condition into very poor or failed condition. Repair work costs six to ten times more for major reconstruction necessary when pavement is in very poor or failed condition as compared to the less invasive techniques that can be used when pavement is in fair or better condition.

NDOT proactively investigates opportunities to use resources wisely by repairing pavement in fair condition before the pavement deteriorates into worse, and thus more costly to repair condition. This philosophy of proactive pavement repair strategies lowers pavement life-cycle costs and better serves the taxpaying public.



REVENUE AND EXPENDITURE

The pavement maintenance and rehabilitation repair work that is performed on the state-maintained roadway network is principally funded through the State Highway Fund, which is a dedicated source of funding established by the Nevada State Constitution expressly for this purpose and appropriated by the legislature. State Highway Fund revenue is primarily provided by Federal Aid and state resources such as the State gasoline and special fuel taxes, vehicle registration fees, commercial carrier fees, and driver license fees.

NDOT invested \$507,270,195 for maintenance and rehabilitation repair work on the state-maintained roadway network during fiscal years 2023 and 2024. This expenditure included a \$206,369,226 investment of state funds, a \$300,527,389 investment of federal funds, and a \$346,580 investment of funds from other sources. Other funding sources include support by local city and public works agencies as well as private utility and telecommunication enterprise with vested interest in localized areas.

There was \$483,230,412 of road repair work contracted out to private contractors and \$24,039,783 of road repair work performed by NDOT Maintenance personnel. The maintenance repair work was accomplished by both private road contractors and NDOT personnel. The rehabilitation repair work was solely accomplished by private road contractors. FIGURE 5 displays the funding sources and construction expenditures information that includes both maintenance and rehabilitation repair work for fiscal years 2023 and 2024.

FIGURE 5. Funding Sources and Construction Expenditures

NDOT advertised \$483,230,412 of contract maintenance and rehabilitation pavement repair work during fiscal years 2023 and 2024. This obligated expenditure improved or maintained the condition level of 704 centerline miles (1,717 lane miles) of roads. TABLE 3 contains a financial summary of the advertised maintenance and rehabilitation repair work that was accomplished on the state-maintained roadway network during fiscal years 2023 and 2024, along with the corresponding mileage that was improved.

TABLES 4 and 5 list the specific rehabilitation projects that were advertised during fiscal years 2023 and 2024. FIGURE 6 identifies the statewide locations where fiscal year 2023 and 2024 rehabilitation projects were completed.

TABLE 3. Advertised Pavement Repair Work for Fiscal Years 2023 and 2024

Fiscal Year	Contract Maintenance Repair Work Expenditure and Mileage	Contract Rehabilitation Repair Work Expenditure and Mileage	Total Contract Maintenance and Rehabilitation Repair Work Expenditure and Mileage
2023	\$39,723,859	\$266,049,258	\$305,773,117
	259 Centerline Miles 548 Lane Miles	183 Centerline Miles 569 Lane Miles	442 Centerline Miles 1,117 Lane Miles
2024	\$30,198,276	\$147,259,019	\$177,457,295
	202 Centerline Miles 427 Lane Miles	60 Centerline Miles 173 Lane Miles	262 Centerline Miles 600 Lane Miles
Biennium Total	\$69,922,135	\$413,308,277	\$483,230,412
	461 Centerline Miles 975 Lane Miles	243 Centerline Miles 742 Lane Miles	704 Centerline Miles 1,717 Lane Miles

TABLE 4. List of Rehabilitation Projects Advertised in Fiscal Year 2023

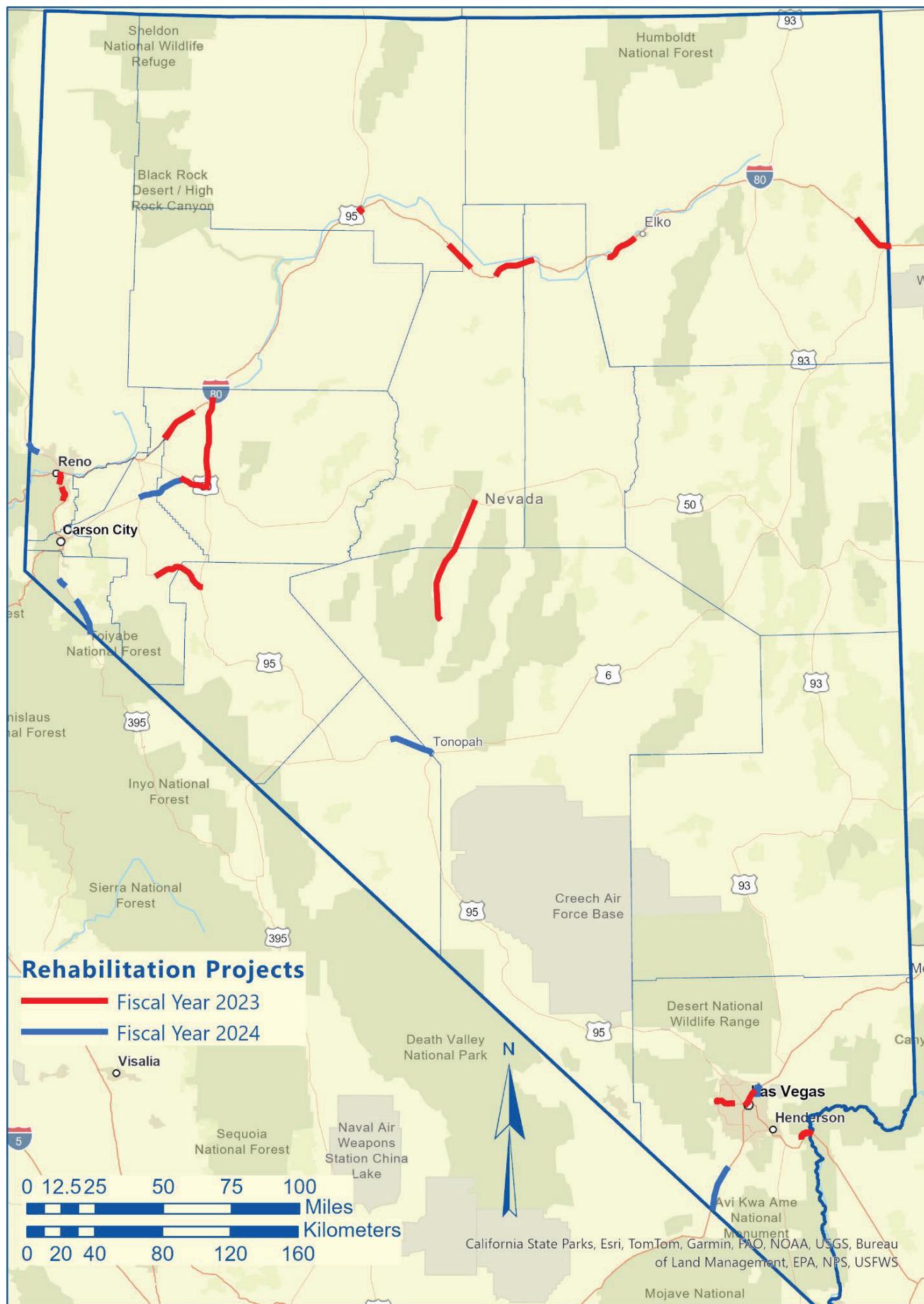

FISCAL YEAR 2023					
Contract Number	County	Mileposts	Length in Miles	Road Category	Cost
3957	Clark	SR613 CL 0.000 - 3.623	3.619	2	\$13,568,490
LOCATION: SR 613, CLARK COUNTY, SUMMERLIN PKWY FROM CC215 RAMP 1 TO RAMPART BLVD; MP CL 0.000 TO MP CL 3.14					
SCOPE: 1 INCH COLD MILL WITH 2 INCH PLANTMIX SURFACE WITH OPEN GRADED SURFACE. RECONSTRUCT 2725 FEET OF SINGLE LANE. 8 INCH ROADBED MODIFICATION, 6 INCH PLANTMIX					
3956	Churchill	US95 CH 0.000 - 29.168 US95 CH 29.168 - 58.861	32.696	2 3	\$14,658,843
LOCATION: US 95, CHURCHILL CO, FROM US 50, WILLIAMS AVE, AT MAINE ST. IN FALLOON TO THE CATTLEGARD 0.29 MILES SOUTH OF I 80, EXIT 83, TRINITY INTERCHANGE. MP CH 26.19 TO MP CH 58.87					
SCOPE: MILL AND OVERLAY, LIGHTING IMPROVEMENTS, ADD DECEL LANE					
3931	Humboldt Lander	IR80 HU 54.891 - 61.364 IR80 LA 0.000 - 3.258	4.8655	1 1	\$16,144,757
LOCATION: I 80, WEST OF BATTLE MOUNTAIN, FROM THE BEGINNING OF THE PCCP, 1.779 MILES EAST OF THE TRAILING EDGE OF I-876, TO 3.240 MILES EAST OF THE HU/LA CO LINE (WB ONLY), MP HU 54.87 TO MP HU 61.38 AND MP LA 0.00 TO MP LA 3.24					
SCOPE: RUBBLIZE PCCP 1.5 INCH STRESS RELIEF COURSE, 5 INCH PLANTMIX BITUMINOUS OVERLAY WITH OPEN GRADED SURFACE					
3940	Clark	IR15 CL 42.966 - 48.168 SR147 CL 0.068 - 0.391	5.472	1 2	\$17,858,462
LOCATION: I 15, CLARK COUNTY, FROM 0.207 MILES SOUTH OF BONANZA GRADE SEPARATION TO 0.245 MILES SOUTH OF CRAIG INTERCHANGE, MP CL 42.97 TO MP CL 48.17; AND SR 147, CLARK COUNTY, FROM 0.068 MILES EAST OF LOSEE ROAD TO YALE STREET, MP CL 0.07 TO MP CL 0.40					
SCOPE: 2-3/4" COLDMILL WITH 2" PLANTMIX BITUMINOUS SURFACE WITH OPEN GRADED SURFACE ON I 15 AND SR 147.					
3939	Elko	IR80 EL 9.465-20.264	10.795	1	\$16,599,494
LOCATION: I 80, ELKO COUNTY, EAST OF CARLIN TUNNELS, 5.9239 MI WEST OF THE HUNTER INTERCHANGE TO 0.359 MI WEST OF WEST ELKO INTERCHANGE; MP EL 9.50 TO MP EL 20.264					
SCOPE: PAVEMENT REHABILITATION					
3944	Churchill	IR80 CH 0.000 - 12.823	12.823	1	\$16,350,333
LOCATION: II 80, CHURCHILL COUNTY, FROM LYON/CHURCHILL COUNTY LINE TO 8.755 MILES EAST OF NIGHTINGALE INTERCHANGE; MP CH 0.00 TO MP CH 12.823					
SCOPE: 1-INCH COLDMILL WITH 2-INCH PLANTMIX BITUMINOUS SURFACE WITH OPEN GRADED SURFACE, 2% PATCH					
3951	Nye Lander	SR376 NY 53.943 - 81.680 SR376 LA 0.000 - 18.048	45.785	3 3	\$24,940,606
LOCATION: SR 376, NYE COUNTY, FROM 0.275 MILES NORTH OF CARVER'S ROADSIDE REST PARK TO US 50; MP NY 53.943 TO MP LA 18.065					
SCOPE: 1" COLDMILL WITH 2" PLANTMIX BITUMINOUS SURFACE WITH OPEN GRADE					
3955	Lander Eureka	IR80 LA 15.889 - 26.855 IR80 EU 0.000 - 2.965	12.440	1 1	\$23,309,473
LOCATION: I 80, LANDER COUNTY, FROM BEGINNING OF ASPHALT 0.424 MI WEST OF ROSNY CREEK GRADE SEPARATION TO EUREKA COUNTY BEGINNING OF PCCP 2.877 MI EAST OF LA/EU COUNTY LINE; MP LA 15.889 TO MP LA 26.970; MP EU 0.00 TO MP EU 2.877					
SCOPE: COLD MILL, PLACE PLANTMIX BITUMINOUS SURFACE WITH OPEN GRADE, ITS, AND LIGHTING					
3960	Humboldt	SR787 HU 0.000 - 0.498	0.498	2	\$1,466,794
LOCATION: SR 787, HUMBOLDT COUNTY, HANSON ST, FROM SR 289/WINNEMUCCA BLVD TO SR 294/GRASS VALLEY RD. MP HU 0.00 TO HU 0.497					
SCOPE: COLD MILL AND PLACE PLANTMIX BITUMINOUS SURFACE WITH OPEN GRADE AND OVERLAY AND BRIDGE DECK REHABILITATION					
3961	Churchill	US50 CH11.234 - 19.351	8.117	2	\$18,826,951
LOCATION: US 50, CHURCHILL COUNTY, FROM US 50A TO 0.008 MILES EAST OF ALLEN ROAD; MP CH 11.234 TO MP CH 19.351					
SCOPE: PHASE 1: US 50A TO TRENTO, COLD MILL, PBS WITH OPEN GRADE; TRENTO TO CASEY, OUTSIDE LANES, ROADBED MOD, PBS WITH OG; TRENTO TO CASEY, INSIDE LANES, COLD MILL, PBS WITH OG; CASEY TO ALLEN, COLD MILL, PBS WITH OG.					
3943-READY	Clark	IR11 CL 0.000 - 2.014 SR172 CL 0.000 - 1.365	3.379	1 4	\$10,025,889
LOCATION: I 11, CLARK COUNTY, FROM NV/AZ STATE LINE TO SR 172 AT HOOVER DAM INTERCHANGE, MP CL 0.000 TO MP CL 2.012; SR 172 FROM I 11 TO 1.612 MI WEST OF NV/AZ STATE LINE, MP CL 0.000 TO MP CL 1.35					
SCOPE: I 11, 1-IN COLDMILL, 3-IN PLANTMIX BITUMINOUS SURFACE WITH OPEN GRADE; SR 172, 1-IN COLDMILL, 2-IN PLANTMIX BITUMINOUS SURFACE WITH OPEN GRADE					

TABLE 4. List of Rehabilitation Projects Advertised in Fiscal Year 2023 (Continued)

FISCAL YEAR 2023					
Contract Number	County	Mileposts	Length in Miles	Road Category	Cost
3966	Mineral Lyon	US95 MI 0.000 - 10.679 US09 LY 0.000 - 9.019	19.698	4 4	\$15,435,080
LOCATION: US 95A, MINERAL AND LYON COUNTIES, FROM US 95 TO EAST OF PETE HENDRICH'S RD; MP MI 0.000 TO MI 10.679; MP LY 0.000 TO MP LY 9.019					
SCOPE: PHASE 1, COLDMILL AND PLANTMIX BITUMINOUS SURFACE WITH OPEN GRADE					
3963 - READV	Washoe	IR580 WA 22.00 - 24.50	2.5	1	\$24,950,030
LOCATION: IR580N, WASHOE COUNTY, PECKHAM TO MILL, WA 22.000 TO WA 24.500					
SCOPE: REMOVE EXISTING PCCP IN TRAVEL LANES AND RECONSTRUCT WITH 9" DENSE GRADE PLANTMIX AND 1" HIMOD OVERLAY.					
3974	Elko	IR80 EL 117.594 - 132.674	15.134	1	\$30,881,165
LOCATION: I 80, ELKO COUNTY, FROM 3.161 MILES WEST OF PILOT PEAK INTERCHANGE TO THE NV/UT STATE LINE; MP EL 117.594 TO MP EL 132.726					
SCOPE: PAVEMENT PRESERVATION INCLUDING BARRIER RAIL/GUARD RAIL REPLACEMENT, SIGN AND STRIPING REPLACEMENT, HYDRAULIC, STRUCTURE, LIGHTING, AND ITS IMPROVEMENTS					
3975	Washoe	IR580 WA 14.970 - 18.558	3.588	1	\$21,032,893
LOCATION: I 580, WASHOE COUNTY, FROM MT ROSE INTERCHANGE TO 0.131 MILES N OF THOMAS CREEK, MP WA 14.97 TO MP WA 18.558					
SCOPE: PROFILE GRIND, AND SEAL JOINTS. MILL AND OVERLAY WITH OPEN GRADE ON RAMPS					

TABLE 5. List of Rehabilitation Projects Advertised in Fiscal Year 2024

FISCAL YEAR 2024					
Contract Number	County	Mileposts	Length in Miles	Road Category	Cost
3981	Douglas	US395 DO 20.580 - 22.248	1.668	2	\$8,393,499
LOCATION: US 395, DOUGLAS COUNTY, WATERLOO TO FIRST STREET MP DO 20.580 TO MP DO 22.248					
SCOPE: PHASE 1: ROADBED MODIFICATION WITH MILL AND OVERLAY, HYDRAULIC STORM DRAIN IMPROVEMENTS, ITS, LIGHTING IMPROVEMENTS.					
3988	Washoe	US395 WA 12.574 - 15.869	3.296	1	\$10,805,618
LOCATION: US 395, WASHOE COUNTY, FROM THE 0.2 MI EAST OF THE COLD SPRINGS INT TO THE CA/NV STATE LINE; MP WA 38.37 TO MP WA 42.16					
SCOPE: OLDMILL AND OVERLAY, PLANTMIX BITUMINOUS SURFACE AND OPEN GRADED WEARING COURSE					
3977	Clark	IR15 CL 50.097 - 50.667 SR610 CL 0.000 - 2.370	2.955	1 2	\$6,535,524
LOCATION: I 15, CLARK COUNTY, FROM 0.029 MILES S OF LAMB INTERCHANGE TO THE BEGINNING OF ASPHALT, 0.541 MILES N OF LAMB INTERCHANGE; MP CL 50.097 TO MP CL 50.667. SR 610, LAMB BLVD, FROM NORTH LAS VEGAS BLVD TO I 15; MP CL 0.000 TO MP CL 2.028					
SCOPE: I 15, CONCRETE SPALL REPAIR AND COLD MILL, PBS WITH OG ON RAMPS. SR610, COLD MILL, PBS WITH OG AND RECONSTRUCT IN TWO LOCATIONS.					
4500	Douglas	US395 DO 0.000 - 12.083	12.083	2	\$19,088,546
LOCATION: US 395, DOUGLAS COUNTY, FROM THE CA/NV STATELINE TO 3.228 MILES NORTH OF THE LEVIATHAN MINE ROAD, MP DO 0.00 TO MP DO 12.083					
SCOPE: 3R PROJECT CONSISTING OF A MILL AND OVERLAY WITH PASSING LANES, HYDRAULIC, LIGHTING, AND ITS IMPROVEMENTS					
4501	Nye Esmeralda	US6 NY 0.000 - 0.660 US6 ES 44.010 - 57.870	14.52	2 2	\$21,360,421
LOCATION: US 6, ESMERALDA COUNTY, 1.936 MILES WEST OF MILLERS ROADSIDE PARK TO THE SLIME WASH IN NYE COUNTY; MP ES 44.01 TO MP ES 57.87 AND MP NY 0.00 TO MP NY 0.66					
SCOPE: MILL AND OVERLAY WITH OPEN-GRADE. CONSTRUCT PASSING LANES AND EXTEND DRAINAGE FACILITIES.					
4502	Clark	IR15 CL 0.000 - 16.380	8.19	1	\$19,022,291
LOCATION: IR 15, JEAN TO BIRD GRADE SEPARATION (NB ONLY)					
SCOPE: 2" COLD MILL, 2" DENSE GRADE WITH 0.75" OPEN GRADE					
3907	Churchill Churchill Lyon	US50 CH 0.000 - 11.000 US50 CH - 11.000 - 11.240 US50 LY 29.690 - 35.400	16.71	3 2 3	\$62,053,111
LOCATION: US 50, LYON TO CHURCHILL COUNTY, VIRGINIA ST. TO LEETEVILLE JUNCTION; MP LY 29.69 TO MP LY 35.40, MP CH 0.00 TO MP CH 11.24					
SCOPE: WIDEN SHOULDERS, COLDMILL AND OVERLAY WITH OPEN GRADE, INTERSECTION IMPROVEMENTS, DRAINAGE, LIGHTING AND ITS IMPROVEMENTS. REMOVE AND CONSTRUCT NEW BRIDGE.					

FIGURE 6. Rehabilitation Project Locations

COSTS OF CONSTRUCTION

The costs for maintenance and rehabilitation repair work on highways fluctuate over time. The periodic fluctuations are typically due to instabilities in the costs of road building materials such as asphalt, cement, and steel, as well as the fluctuations in energy costs. Although these fluctuations occasionally lead to price decreases, the general trend for maintenance and rehabilitation repair work costs is in the upward direction.

NDOT recognizes that these periodic cost fluctuations complicate the project planning process and cause uncertainty in the highway construction industry. NDOT tries to mitigate this uncertainty by sharing the risk with contractors through fuel and asphalt escalation clauses in project contracts. However, sharing the risk of cost fluctuations does not eliminate the overall long-term increase in construction costs as reported by the Associated General Contractors of America, the American Road and Transportation Builders Association, the Federal Highway Administration, and other data sources.

The Federal Highway Administration developed the National Highway Construction Cost Index (NHCCI) to measure average changes in the prices of highway construction costs over time. This index is based on pricing information contained in winning highway construction contracts. FIGURE 7 shows the NHCCI index from March 2003 through December 2023. From 2010-2020, the cost trend was a modest 3.5% increase per year. However, starting in 2021, costs have been steadily rising at an annual rate of nearly 20%. When compared to a general index such as the Producer Price Index (PPI) published by the Bureau of Labor Statistics (BLS), the NHCCI exhibits similar patterns, but faster growth. This relationship suggests that the costs of road construction are generally outpacing normal inflation, which further strains the ability to provide necessary funding.

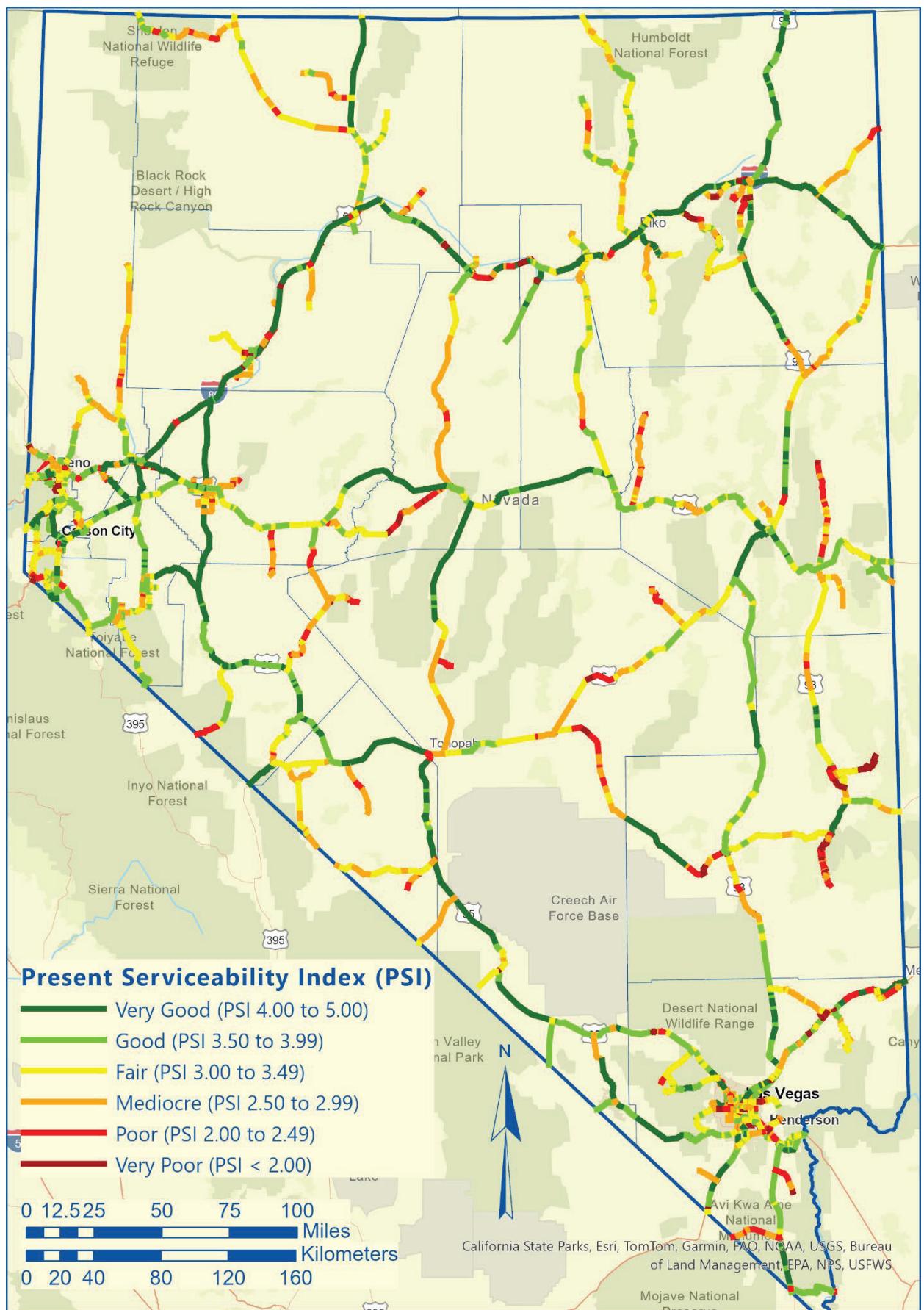
FIGURE 7. National Highway Construction Cost Index (NHCCI)

Source: Federal Highway Administration.

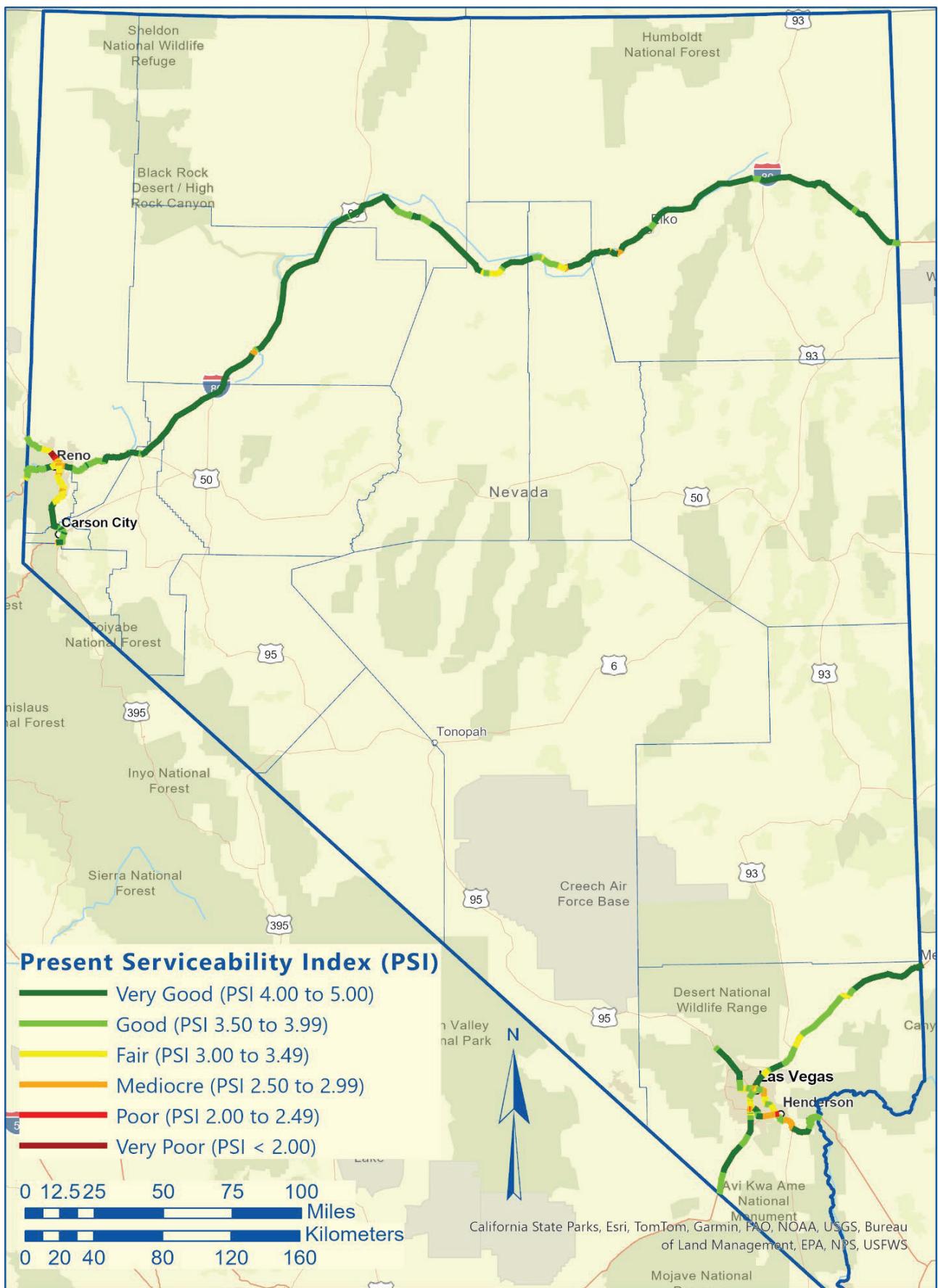
A significant portion of NDOT funding for road construction projects comes from fuel taxes, which have not provided revenue that keeps up with inflation. Because of this, the purchasing power of the revenue for road construction is approximately fifty percent of what it was in 2003. Future revenue from fuel taxes will see even more pressure with increasing fuel economy standards and the accelerating adoption of electric vehicles.

PAVEMENT CONDITION

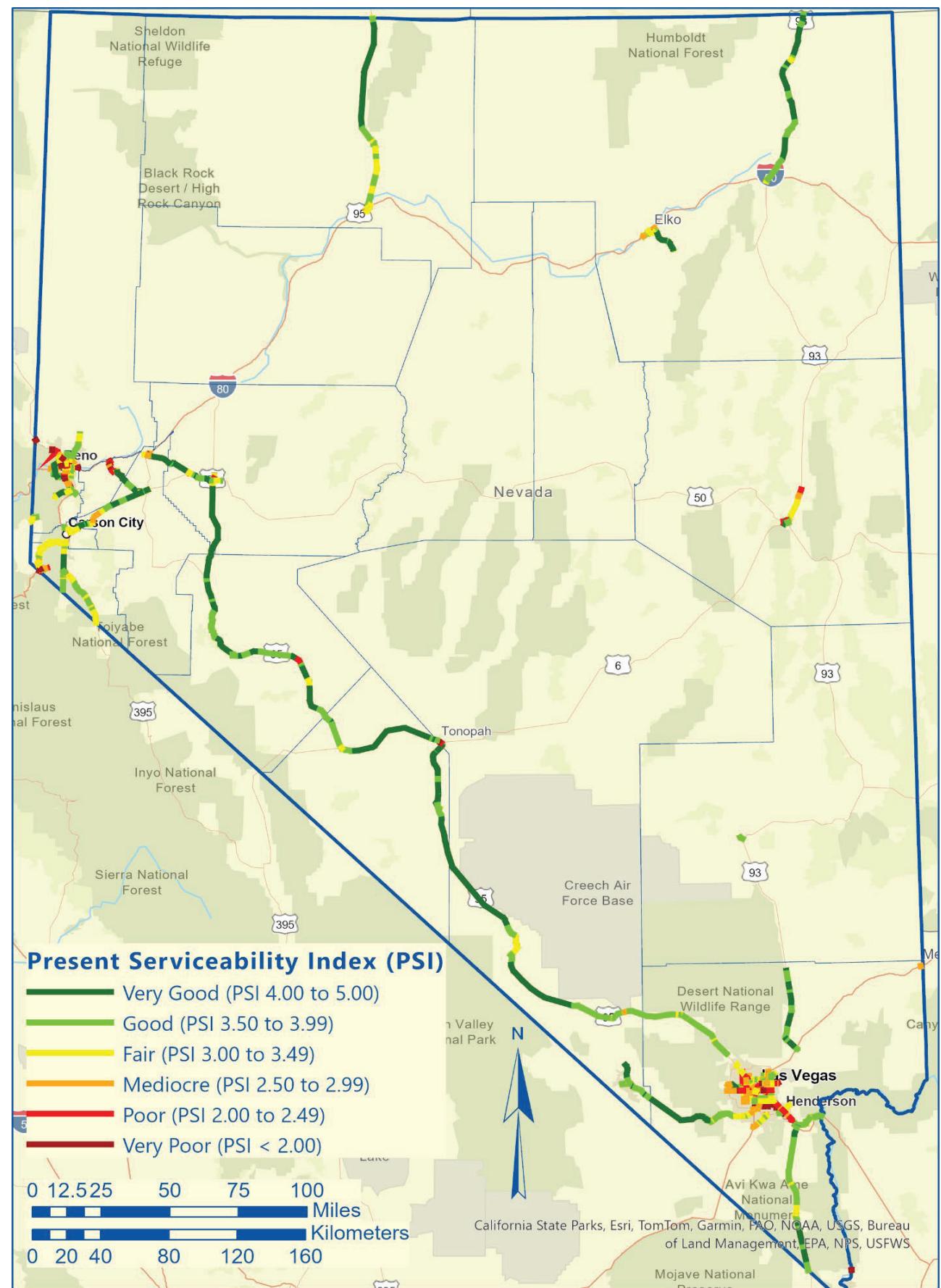
A safe, efficient, and reliable roadway network is a matter of regional importance and promotes the general welfare of all people that live, work, and play in the state. Nevada's pavement has ranked in the top one-half in the nation for the last several years as compared with the overall highway performance and efficiency of other states' roadway networks as reported in the *Annual Highway Report* by the *Reason Foundation*. NDOT uses the PSI pavement condition rating system previously discussed and graphically shown in FIGURE 2 to evaluate and report the condition of the roadway network. TABLE 6 presents the PSI condition data for each road prioritization category on the state-maintained roadway network. Category 1 is divided into asphalt (A) and Portland Cement Concrete (C) surfaces for further clarity.

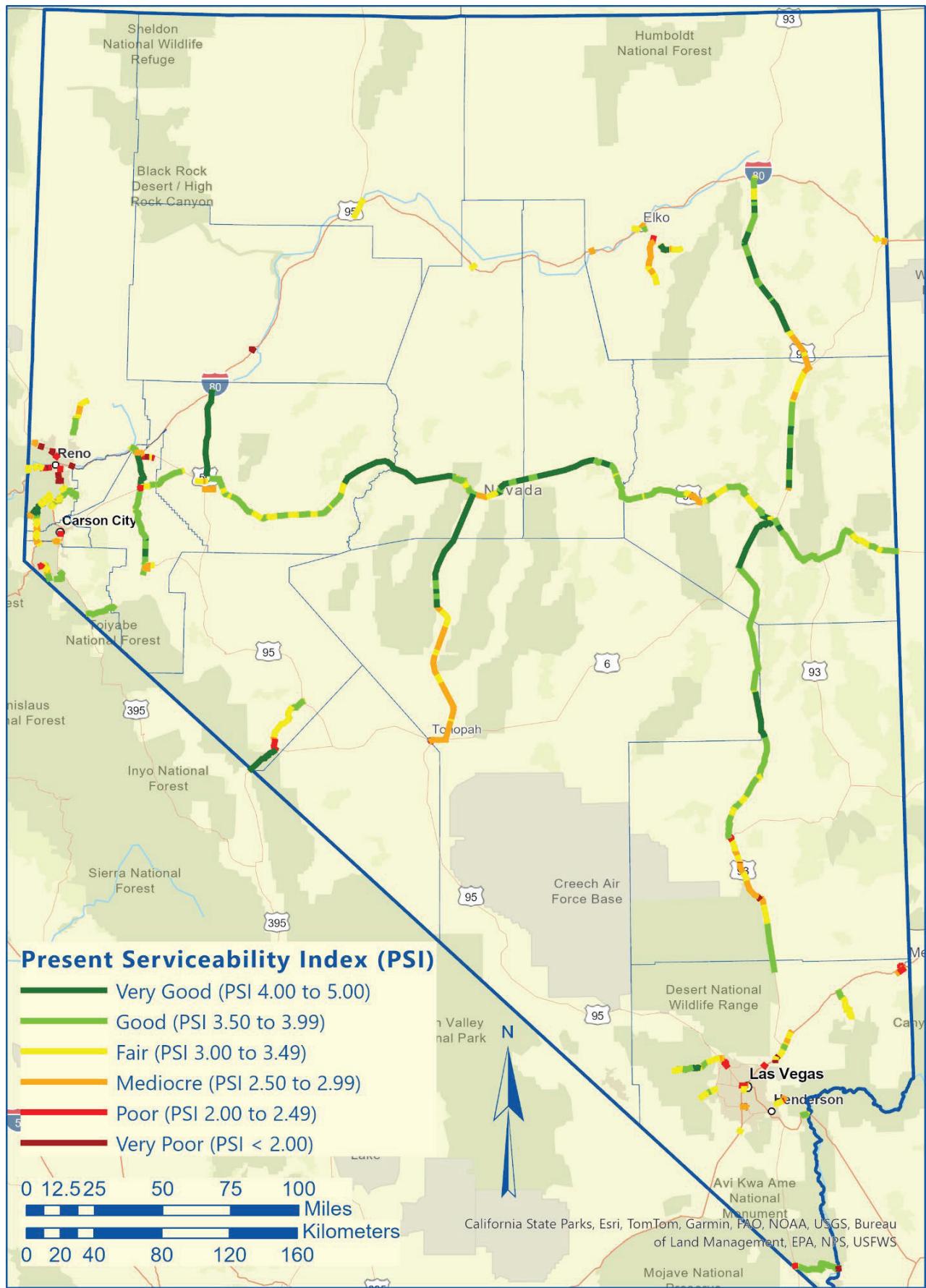

TABLE 6. PSI Pavement Condition by Road Prioritization Category

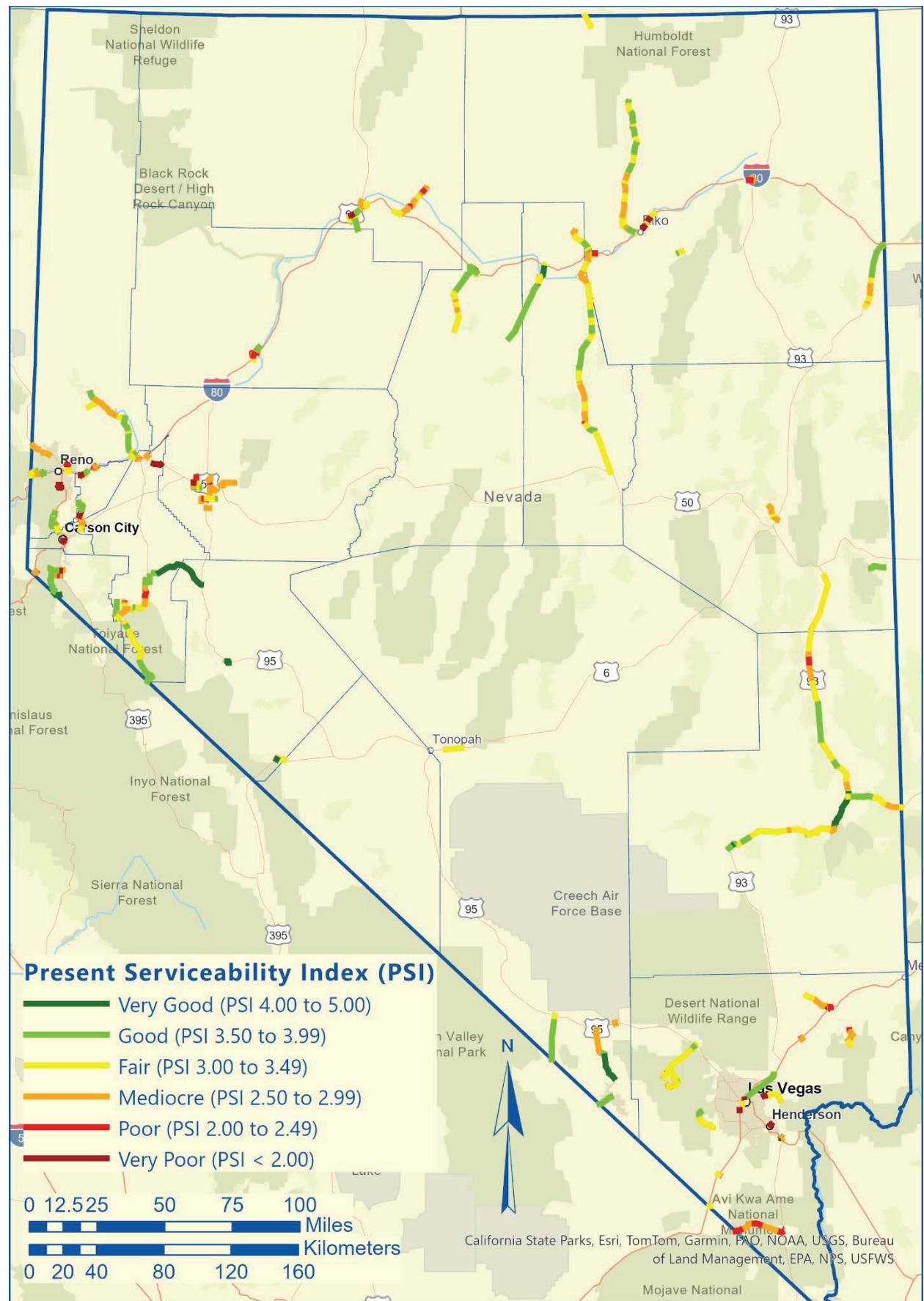
Condition	PSI Rating Scale	PSI Condition by Road Prioritization Category Percentage (%) and Centerline Miles						
		Road Category 1		Road Category 2	Road Category 3	Road Category 4	Road Category 5	Roadway Network Totals
		A	C					
Very Good	5.00 to 4.00	73.4% 413.5	12.6% 12.1	42.4% 437.8	27.6% 299.3	7.2% 58.8	2.3% 37.9	24.1% 1,259
Good	3.99 to 3.50	21.6% 121.7	25.4% 24.4	32.5% 335.2	36.0% 390.7	30.3% 248.7	10.2% 166.4	24.6% 1,287
Fair	3.49 to 3.00	3.8% 21.5	38.1% 36.7	15.6% 161.4	22.3% 241.8	36.1% 296.2	29.5% 481.0	23.7% 1,239
Mediocre	2.99 to 2.50	0.9% 4.9	20.2% 19.5	5.0% 52.0	10.6% 115.3	20.0% 164.5	35.2% 574.7	17.8% 931
Poor	2.49 to 2.00	0.3% 1.5	3.6% 3.4	2.5% 25.6	2.9% 31.1	5.2% 42.6	15.3% 250.2	6.8% 354
Very Poor	< 2.00	0.0% 0.0	0.3% 0.2	2.0% 20.1	0.7% 7.8	1.2% 10.1	7.4% 121.3	3.1% 160
Total Miles:		660		1,032	1,086	821	1,632	5,230


1) Data as reported in the 2023 PMS Data Warehouse.

2) The reported total of 5,230 miles includes only those roadways that were surveyed in 2023. The total state-maintained roadway network mileage of 5,396 miles mentioned in the Roadway Network Inventory section of the report is the mileage count that includes all roads.


FIGURE 8 is a map of the state's roadway network inventory identified by the PSI rating system. FIGURES 9 through 13 are maps of road prioritization categories 1 through 5 identified by the PSI rating system.


FIGURE 8. Roadway Network Inventory Identified by Present Serviceability Index (PSI)


FIGURE 9. Road Prioritization Category 1 by Present Serviceability Index (PSI)

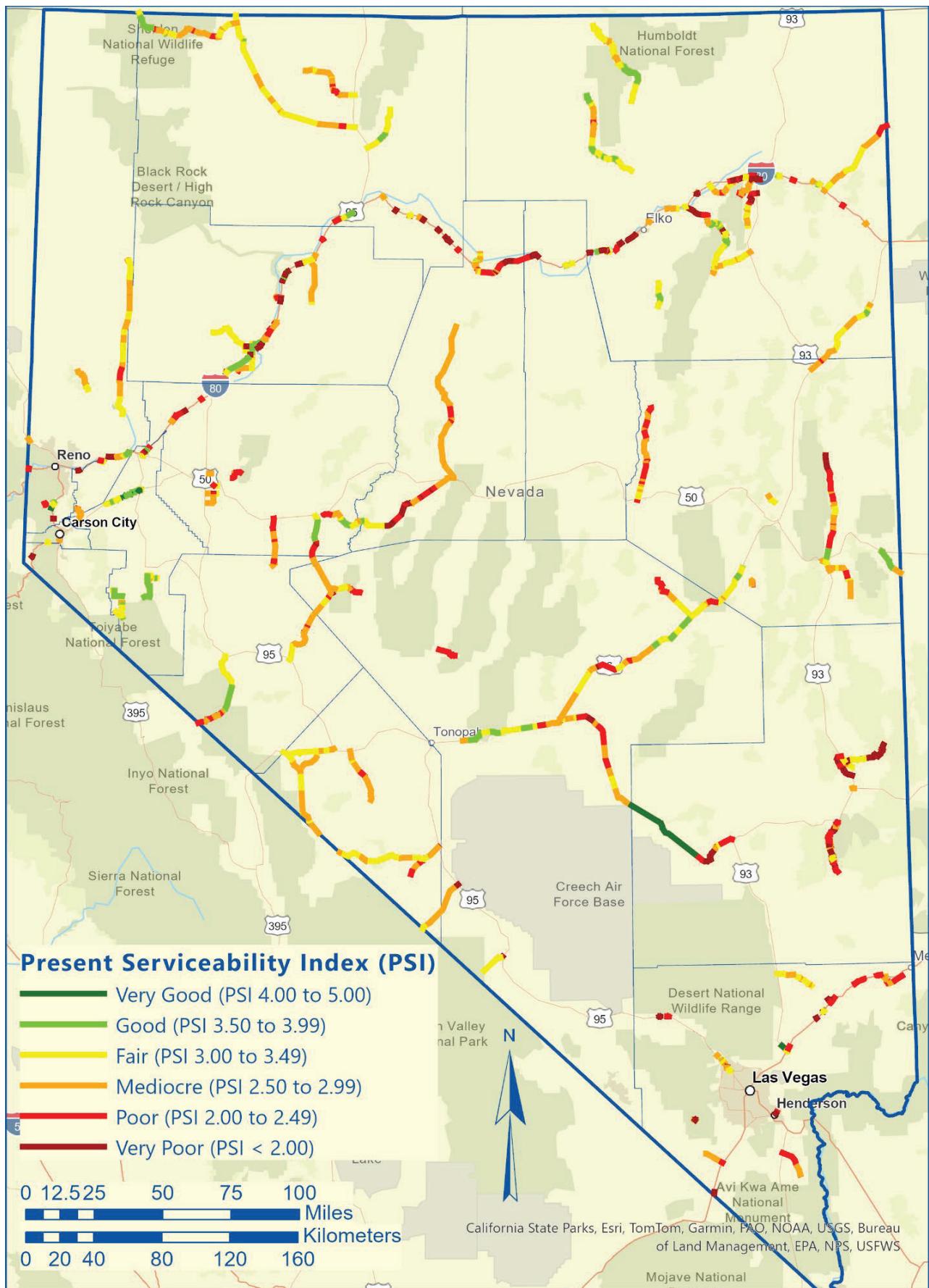
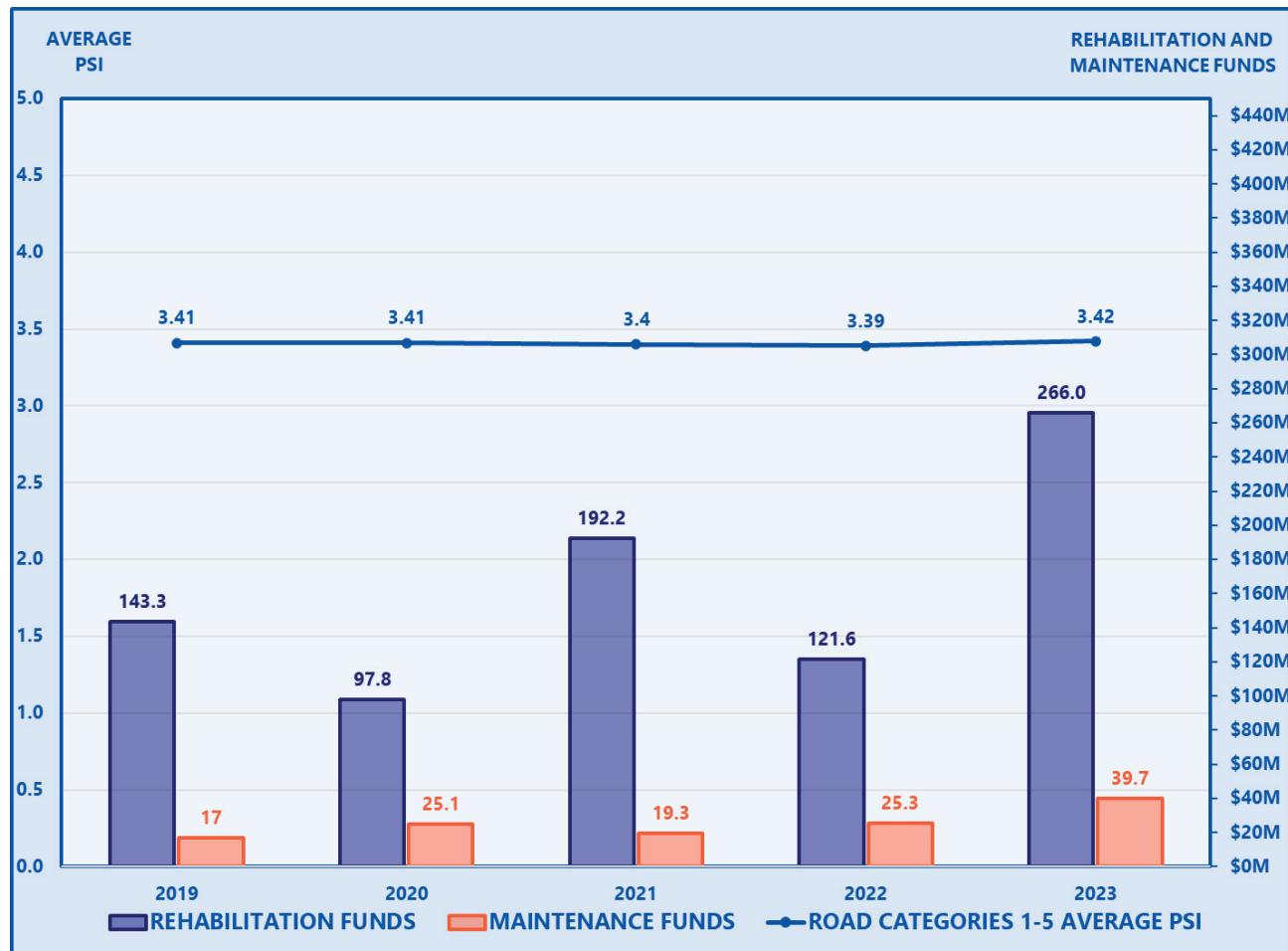

FIGURE 10. Road Prioritization Category 2 by Present Serviceability Index (PSI)

FIGURE 11. Road Prioritization Category 3 by Present Serviceability Index (PSI)

FIGURE 12. Road Prioritization Category 4 by Present Serviceability Index (PSI)

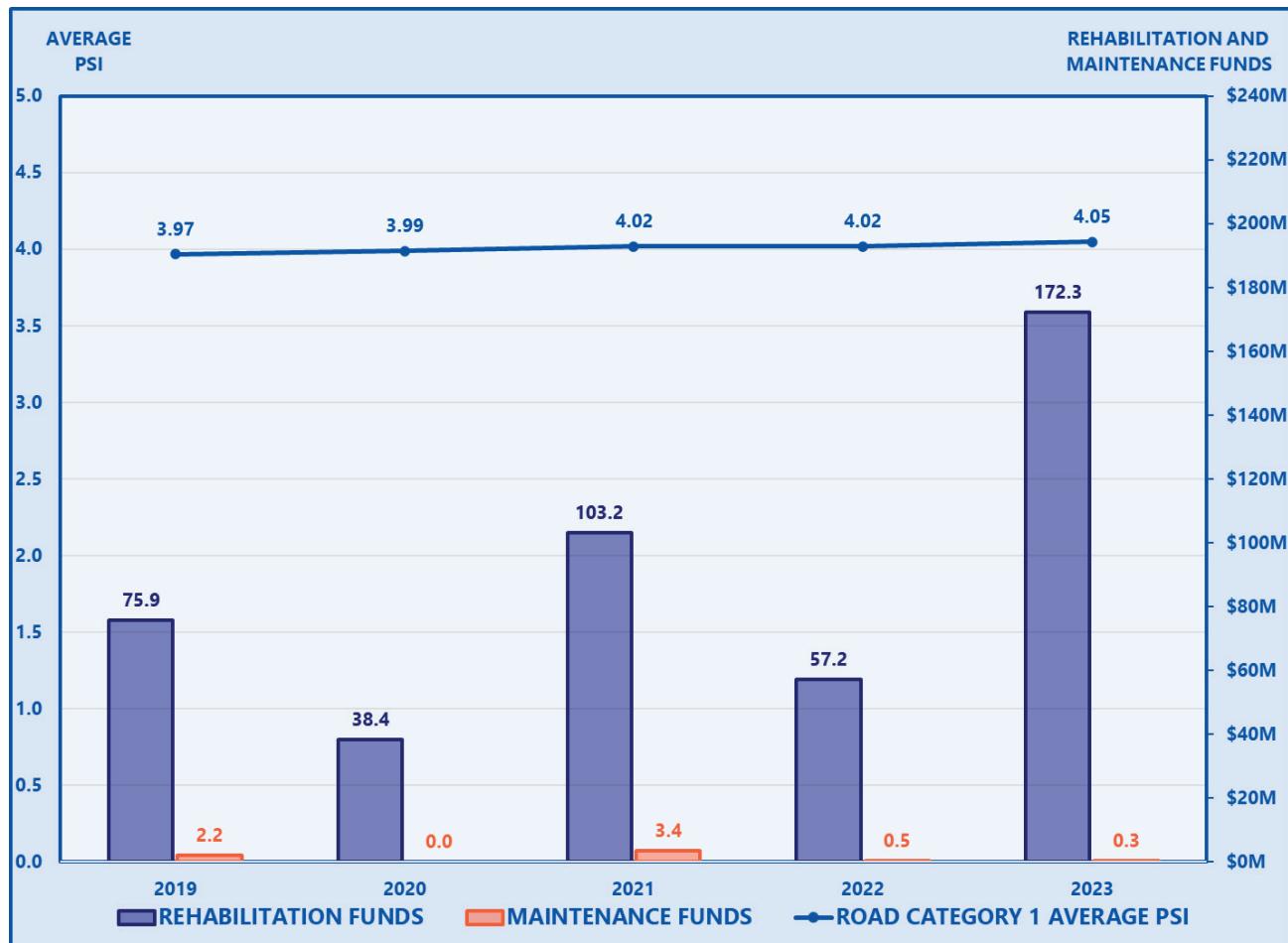
FIGURE 13. Road Prioritization Category 5 by Present Serviceability Index (PSI)

NDOT partitions the state into three districts to more effectively manage the state's pavement assets. District 1 includes Clark, Esmeralda, Lincoln, and most of Nye County. District 2 is comprised of most of Carson City, Churchill, Douglas, Lyon, Mineral, Pershing, Storey, and Washoe Counties. District 3 consists of the majority of Elko, Eureka, Humboldt, Lander, and White Pine Counties. TABLE 7 shows the pavement condition in each district identified by the PSI rating system, and TABLE 8 shows the pavement condition in each county identified by the PSI rating system.


TABLE 7. District Pavement Condition by Present Serviceability Index (PSI)

District	Average PSI Condition by Road Prioritization Category and Miles per District				
	Road Category 1	Road Category 2	Road Category 3	Road Category 4	Road Category 5
District 1	3.81 198 mi	3.76 536 mi	3.44 319 mi	3.31 284 mi	2.84 546 mi
District 2	4.02 196 mi	3.71 318 mi	3.65 289 mi	3.29 224 mi	2.96 318 mi
District 3	4.26 266 mi	3.93 178 mi	3.72 479 mi	3.29 313 mi	2.83 768 mi
Total All Districts	4.05 660 mi	3.78 1032 mi	3.62 1086 mi	3.30 821 mi	2.86 1632 mi

TABLE 8. County Pavement Condition by Present Serviceability Index (PSI)


County	Average PSI Condition by Road Prioritization Category and Miles per County				
	Road Category 1	Road Category 2	Road Category 3	Road Category 4	Road Category 5
Carson City	4.01 9.6 mi	3.33 12.5 mi	3.11 4.1 mi	1.85 0.3 mi	3.01 0.4 mi
Churchill	4.36 29.3 mi	4.08 49.0 mi	3.83 132.0 mi	2.92 29.3 mi	2.70 69.4 mi
Clark	3.81 197.8 mi	3.50 282.8 mi	3.37 85.1 mi	3.02 90.3 mi	2.66 64.0 mi
Douglas	Not Applicable	3.38 59.4 mi	3.43 24.1 mi	3.54 19.0 mi	0.72 0.2 mi
Elko	4.35 132.7 mi	4.01 83.3 mi	3.59 101.8 mi	3.27 103.7 mi	2.88 272.2 mi
Esmeralda	Not Applicable	4.10 97.0 mi	Not Applicable	Not Applicable	2.91 140.6 mi
Eureka	3.86 25.9 mi	Not Applicable	3.95 47.3 mi	3.33 109.1 mi	2.16 6.2 mi
Humboldt	4.27 61.4 mi	4.02 77.6 mi	3.29 3.9 mi	3.00 28.5 mi	3.01 167.8 mi
Lander	4.08 26.9 mi	Not Applicable	4.01 75.4 mi	3.47 39.3 mi	2.57 136.7 mi
Lincoln	Not Applicable	3.58 1.0 mi	3.42 98.7 mi	3.40 142.7 mi	2.83 105.5 mi
Lyon	4.27 14.3 mi	3.96 51.0 mi	3.65 66.1 mi	3.31 80.0 mi	3.48 42.8 mi
Mineral	Not Applicable	4.02 92.2 mi	3.61 35.2 mi	3.98 15.2 mi	2.95 62.3 mi
Nye	Not Applicable	4.03 130.1 mi	3.44 126.0 mi	3.59 47.4 mi	2.88 249.7 mi
Pershing	4.40 75.1 mi	Not Applicable	1.52 0.3 mi	2.96 8.2 mi	2.90 110.8 mi
Storey	Not Applicable	2.84 10.4 mi	3.69 1.8 mi	3.09 9.0 mi	2.81 3.3 mi
Washoe	3.64 86.7 mi	3.43 68.8 mi	3.40 60.2 mi	3.28 66.1 mi	2.90 66.6 mi
White Pine	Not Applicable	3.17 17.0 mi	3.69 223.9 mi	3.25 32.7 mi	2.76 132.9 mi
Total All Counties	4.05 659.5 mi	3.78 1032.1 mi	3.62 1086.1 mi	3.30 820.9 mi	2.86 1631.5 mi

Past condition data were reviewed using the PSI pavement condition rating system to determine if the funds spent to perform maintenance and rehabilitation repair work were adequate to maintain or improve the average condition of the roadway network. FIGURES 14 through 19 are the results of this review. The most recent year included in each figure is 2023 – the most recent year for which performance data is available. FIGURE 14 demonstrates the overall average PSI for the entire roadway network has been in the upper part of the fair range, with a generally stable trend.

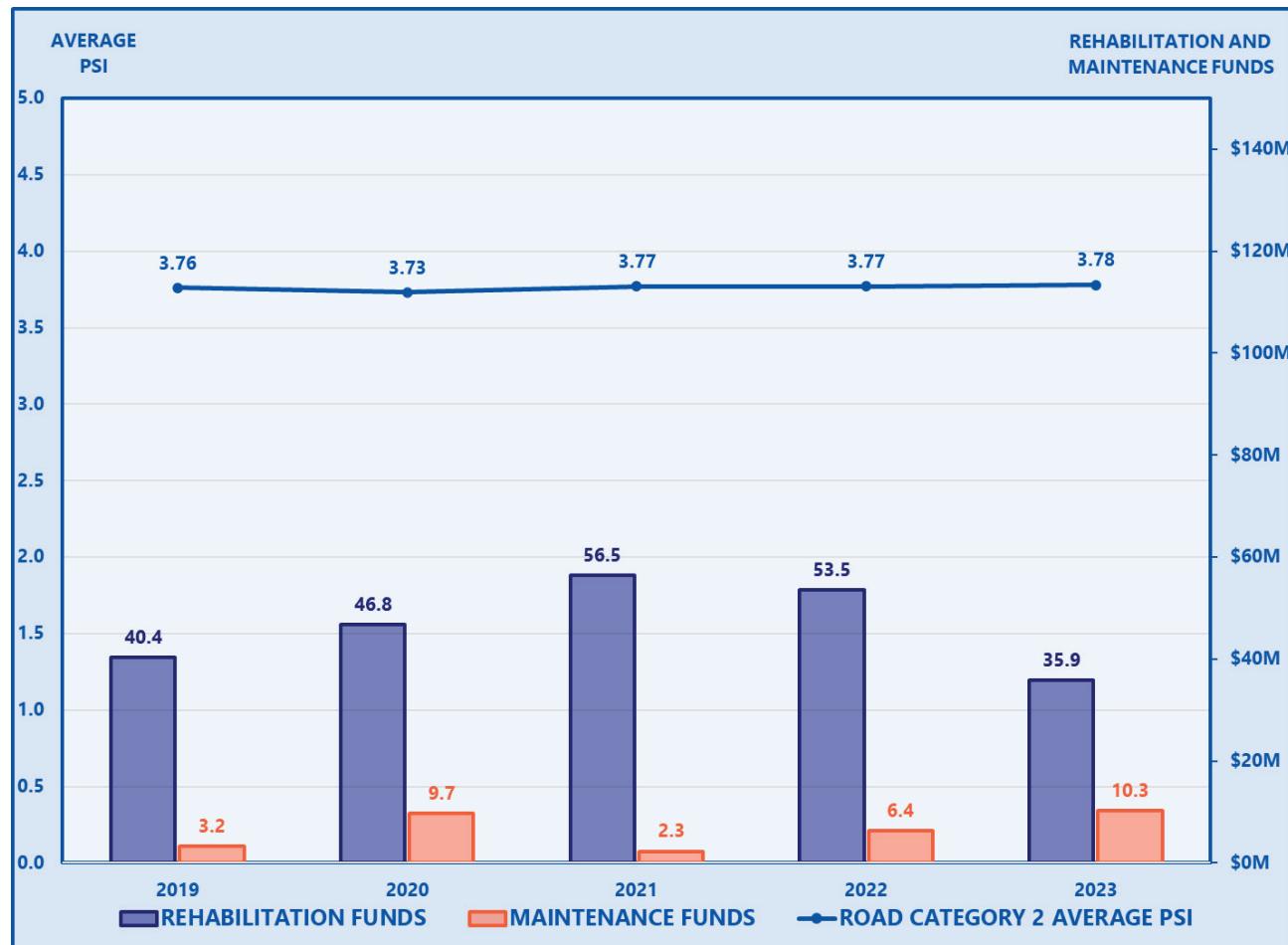

FIGURE 14. Average PSI and Expenditures for Roadway Network

FIGURE 15 illustrates the long-term average PSI for road category 1 and the rehabilitation and maintenance expenditure for each year from 2019 through 2023. Category 1 roads include the controlled access highways such as I-15, I-580, and I-80. Due to interstate economic importance, increased federal condition requirements, and the relatively high volumes and speeds encountered on these routes, they are given the highest priority. Because of this, NDOT spends a substantial amount of the rehabilitation funds to maintain these roads in good condition each year. An average of nearly \$90 million per year has been spent on these roads since 2019. This abundant spending has led to the condition being firmly in the very good category.

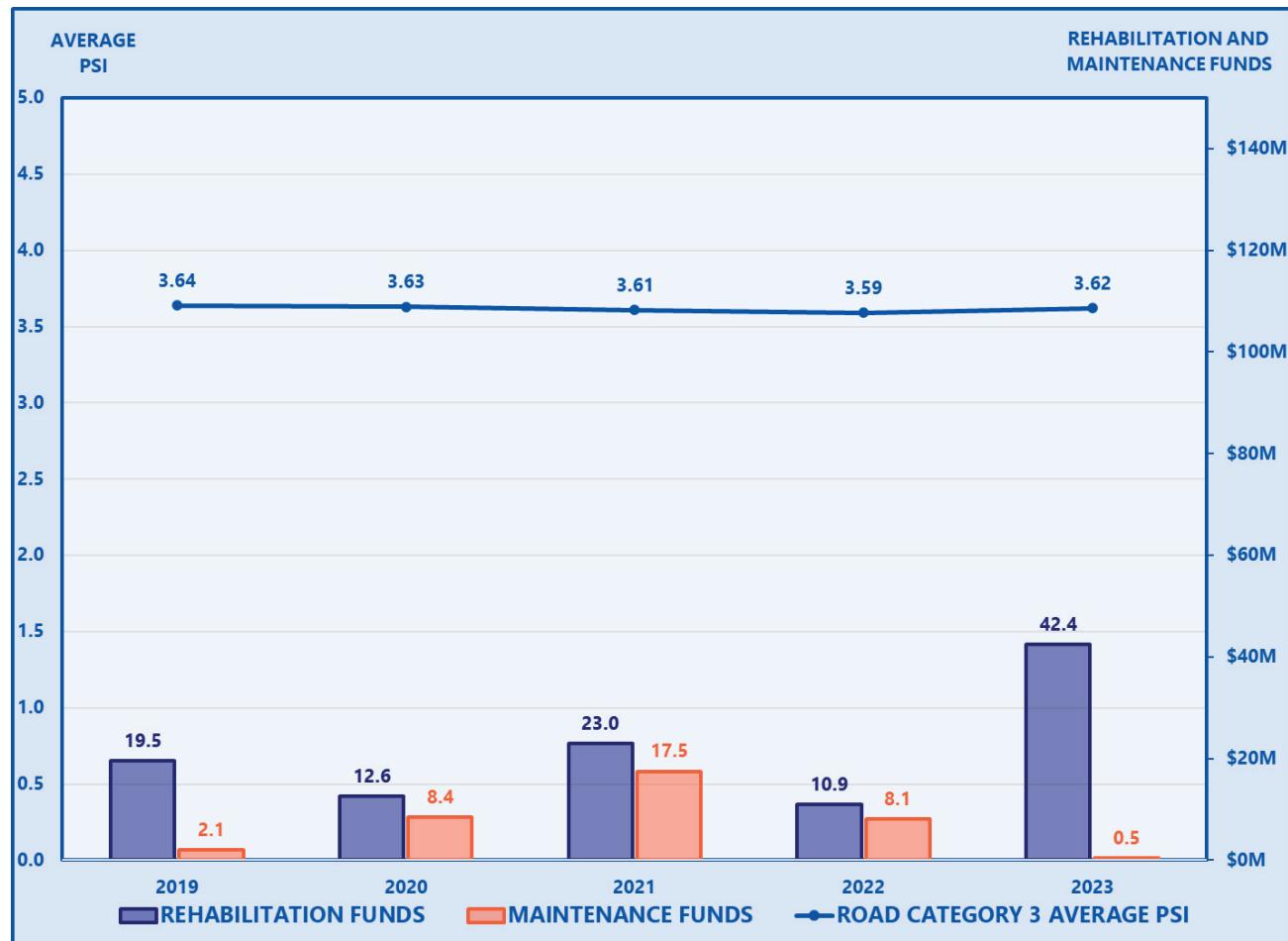

FIGURE 15. Average PSI and Expenditures for Road Category 1

FIGURE 16 shows the long-term average PSI for road category 2 and the rehabilitation and maintenance expenditure for each year from 2019 through 2023. Category 2 roads include routes such as St. Rose Parkway/Lake Mead Drive, US-50 Lincoln Highway in Carson City, and McCarran Boulevard in Reno. The average PSI has remained in good condition through this period, but was declining until 2021. Category 2 roads were previously not meeting performance targets, which led to consistently increasing spending through 2021. These roads are now meeting performance targets, and continue to receive the funding necessary to keep them above those targets.

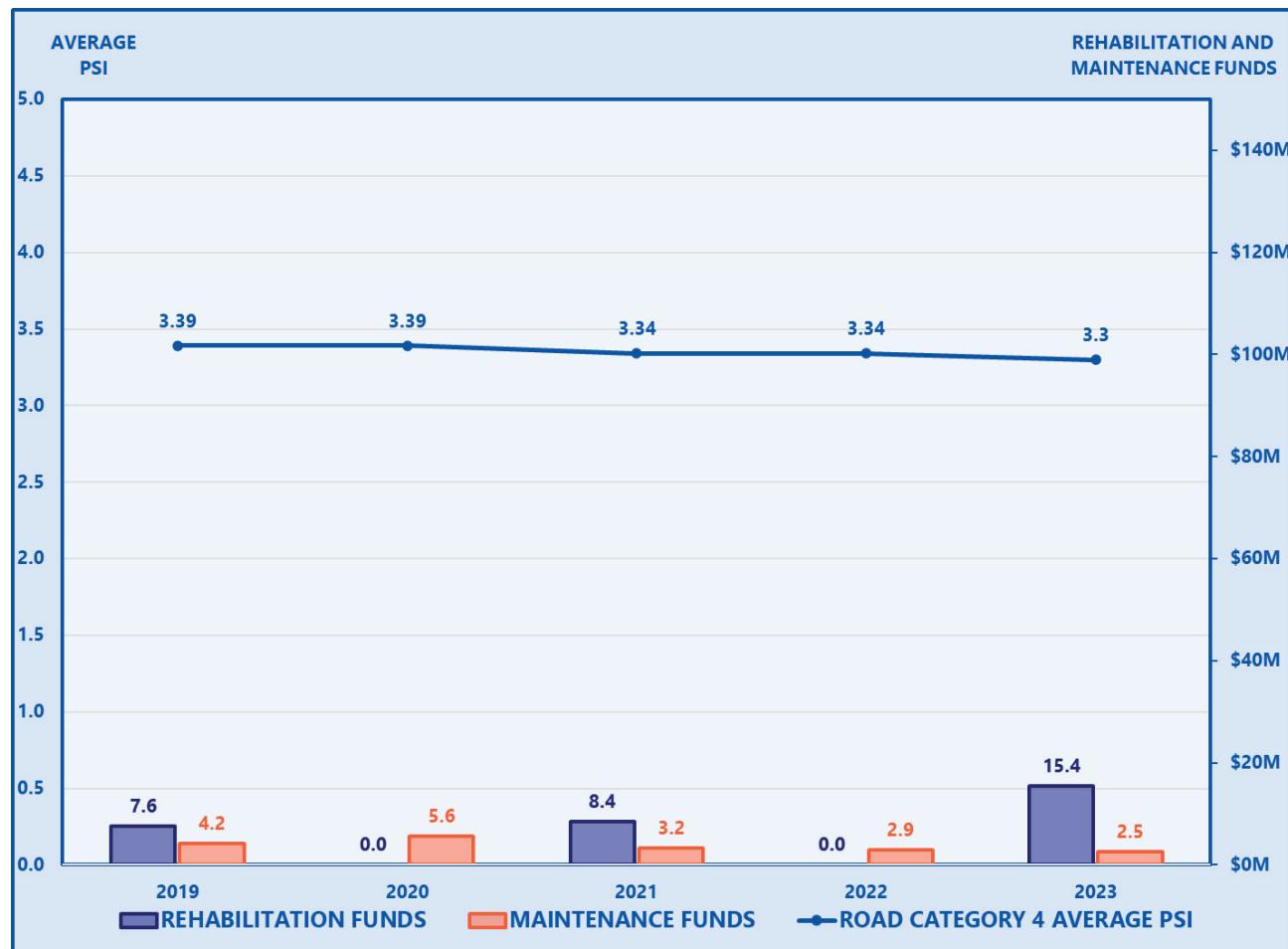

FIGURE 16. Average PSI and Expenditures for Road Category 2

FIGURE 17 displays the long-term average PSI for road category 3 and the rehabilitation and maintenance expenditure for each year from 2019 through 2023. Category 3 roads include routes such as SR-318/Sunnyside Road in Nye County, SR-28 near Lake Tahoe, and US-50 Lincoln Highway in Lander/Eureka Counties. The average PSI has been solidly in good condition but was slightly declining through 2022. The decline was generally expected because this category of roads was performing well above target levels, and therefore not given priority in spending. The declining performance trend stopped in 2023, and spending has increased back to levels necessary to maintain performance at desired levels.

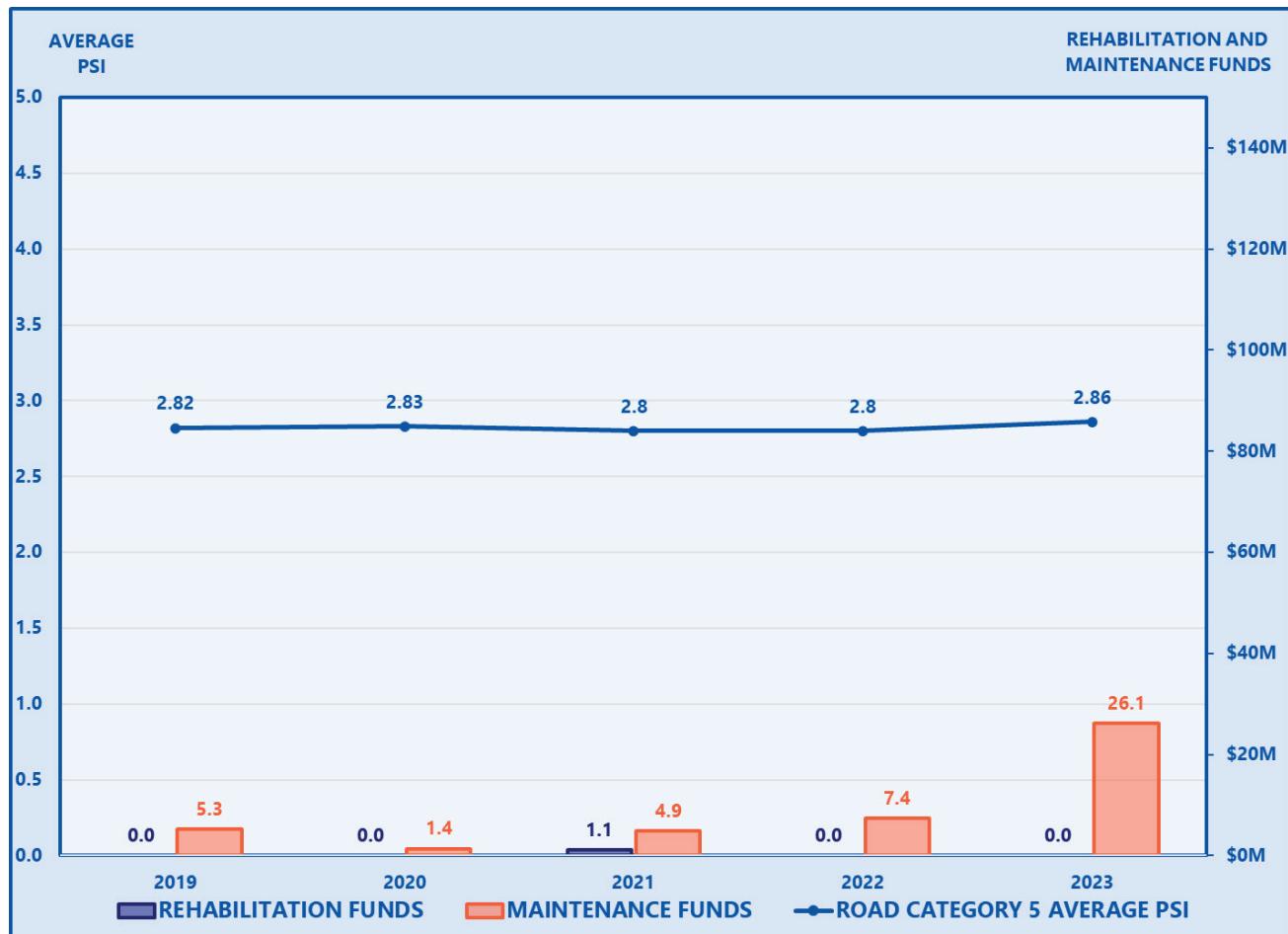

FIGURE 17. Average PSI and Expenditures for Road Category 3

FIGURE 18 demonstrates the long-term average PSI for road category 4 and the rehabilitation and maintenance expenditure for each year from 2019 through 2023. Category 4 roads include routes such as SR-373/ Death Valley Junction Road, SR-319/ Panaca Road, and SR-278/Eureka-Carlin Road. The average PSI has been steadily decreasing since 2019, but it is projected that category 4 roads will stay in fair condition on average despite the limited funding they receive. Average rehabilitation spending in category 4 is only about \$6.3 million per year since 2019, and this category also receives limited maintenance funding of less than \$4 million per year, which has led to the decreasing performance.

FIGURE 18. Average PSI and Expenditures for Road Category 4

FIGURE 19 presents the long-term average PSI for road category 5 and the rehabilitation and maintenance expenditure for each year from 2019 through 2023. Category 5 roads include routes such as SR-140/Denio-Adel Road, SR-375/Warm Springs Road, and SR-722/Carrol Summit Road. These roads have been in the middle of the mediocre range for a long time. Because of the generally low volume and network importance of category 5 roads, they receive very little rehabilitation funding, and primarily depend on maintenance spending to maintain performance. This category of roads has been performing below target for some time, and increased spending began in 2022. This spending has halted the performance decline, and average PSI noticeably increased in 2023. Because of the modest targets set for this category, overall performance is likely to stay in the mediocre range even when targets are met.

FIGURE 19. Average PSI and Expenditures for Road Category 5

PAVEMENT CONDITION GOAL

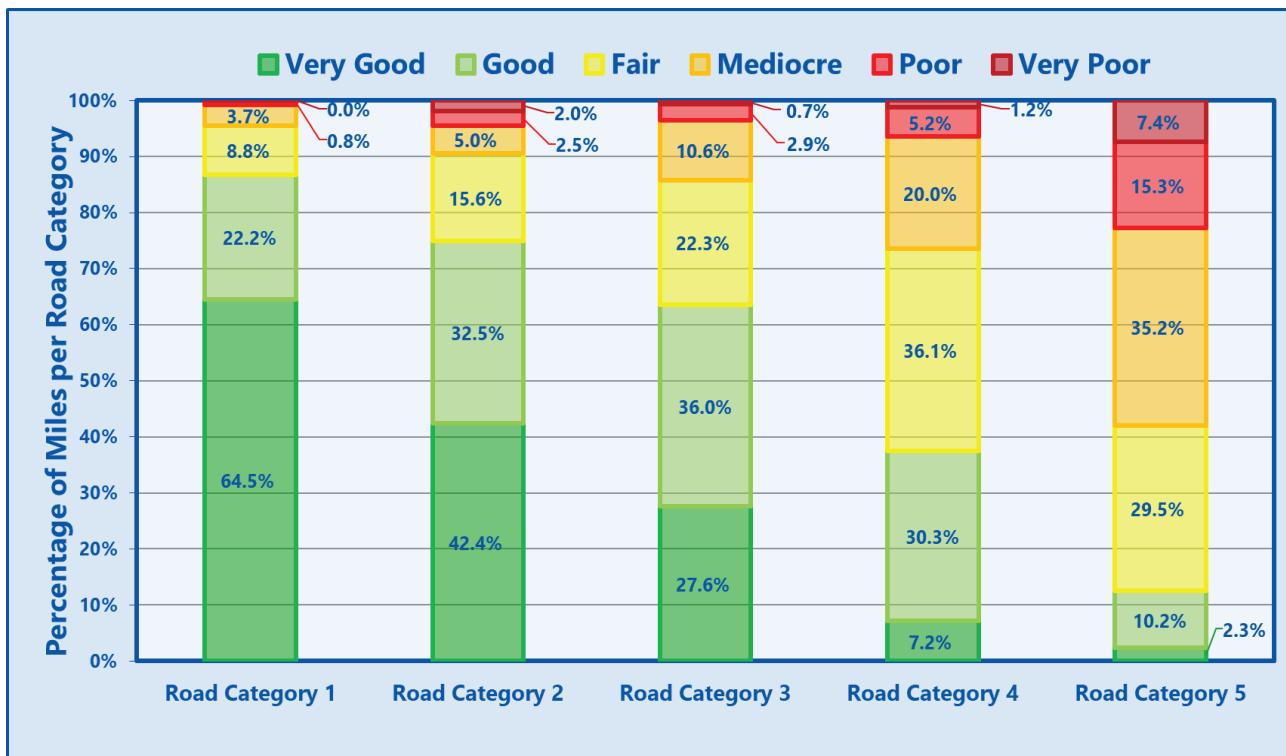

A pavement condition goal has been established to provide a measure of the effectiveness of the maintenance and rehabilitation repair work that is performed on state roads. Careful consideration was used to balance the cost of rehabilitation at varying pavement condition levels with the availability of funds. Other criteria used in the process included pavement deterioration rates, the effectiveness of maintenance repair work, traffic volume, the number of heavy trucks, and the cost to repair or replace roads in each road prioritization category. The current performance goal is 95% fair or better for category 1, 90% for category 2, 85% for category 3, 75% for category 4, and 50% for category 5.

TABLE 9 lists the current status of each road category with respect to the established pavement condition goal. Category 1 is divided into asphalt (A) and Portland Cement Concrete (C) categories for clarity. The data shows that category 1, 2, and 3 roads meet or exceed the goal, category 4 roads are slightly below goal, and category 5 roads are well below the goal.

TABLE 9. Pavement Condition Versus Established Goal by Road Category

Condition	PSI Rating Scale	PSI Condition by Road Prioritization Category Percentage (%) and Number of Miles						
		Road Category 1		Road Category 2	Road Category 3	Road Category 4	Road Category 5	Roadway Network Totals
		A	C					
Very Good	5.00 to 4.00	73.4% 413.5	12.6% 12.1	42.4% 437.8	27.6% 299.3	7.2% 58.8	2.3% 37.9	24.1% 1,259
Good	3.99 to 3.50	21.6% 121.7	25.4% 24.4	32.5% 335.2	36.0% 390.7	30.3% 248.7	10.2% 166.4	24.6% 1,287
Fair	3.49 to 3.00	3.8% 21.45	38.1% 36.69	15.6% 161.40	22.3% 241.80	36.1% 296.20	29.5% 481.00	23.7% 1,239
Mediocre	2.99 to 2.50	0.9% 4.9	20.2% 19.5	5.0% 52.0	10.6% 115.3	20.0% 164.5	35.2% 574.7	17.8% 931
Poor	2.49 to 2.00	0.3% 1.5	3.6% 3.4	2.5% 25.6	2.9% 31.1	5.2% 42.6	15.3% 250.2	6.8% 354
Very Poor	< 2.00	0.0% 0.0	0.3% 0.2	2.0% 20.1	0.7% 7.8	1.2% 10.1	7.4% 121.3	3.1% 160
Total Miles:		660		1,032	1,086	821	1,632	5,230
Condition Goal: Min. Percentage of Roads in Fair or Better Condition		95%		90%	85%	75%	50%	
Current Condition: Percentage of Roads in Fair or Better Condition		95.5%		90.5%	85.8%	73.5%	42.0%	72.4%
Does the current condition meet the condition goal?		YES		YES	YES	NO	NO	----

FIGURE 20 displays the percentage of miles per road category as identified by the PSI pavement condition rating system. The majority of the pavement in road categories 1 through 4 is in fair or better condition. The majority of pavement in road category 5 is in mediocre or worse condition.

FIGURE 20. Percentage of Miles per Road Category and Pavement Condition

This shows that each successive category has generally less very good and good roads, and generally more mediocre, poor, and very poor roads. It is also worth noting that even though the percent fair or better for category 2 and 3 is not much lower than that for category 1, these category 1 roads are predominantly very good, while the category 2 and 3 roads are more fair and good.

TRANSPORTATION ASSET MANAGEMENT PLAN CONSISTENCY

The Transportation Asset Management Plan (TAMP) establishes investment expectations for NDOT based on historical state revenue and the typical NDOT share of that revenue. Relevant to the highway preservation process, anticipated investments in pavement maintenance, preservation, rehabilitation, and reconstruction are set in this plan.

Although these specific work type categories are prescribed by FHWA, there is no common definition provided, and each agency must develop internal definitions. Consistent with what has been previously identified, NDOT uses the following work type definitions for this purpose:

- **Maintenance.** This category includes repairs that address surface deterioration, but that do not improve the pavement's ability to carry traffic loads - generally funded with Maintenance funds
- **Preservation.** Used more specifically when describing pavement treatments, preservation includes those treatments applied to roads in good condition in order to prevent further degradation and maintain a high level of service – generally funded with Preservation funds.
- **Rehabilitation.** This category includes more substantial repairs that are applied when the pavement is in fair or worse condition to repair the structurally deficient section and provide a new surface the improves the pavement's ability to carry traffic loads – generally funded with Preservation funds.
- **Reconstruction.** Reconstruction repairs are applied to roads that are damaged to the point where they require replacement or recycling of the bound layers, and potentially the base layers – generally funded with Preservation funds.

In order to inform FHWA's annual determination of consistency under 23 U.S.C. 119 (23 CFR 515.13(b)), NDOT provides a breakdown of spending corresponding to each of these categories. TABLE 10 shows the individual category investment targets established in the TAMP, as well as the reported 2023 and 2024 investments.

TABLE 10. Transportation Asset Management Plan Investment Consistency

Work Type	TAMP Expected Investment	FY2023 Investment	FY2024 Investment
Maintenance	\$16,000,000	\$10,162,256 63.5%	\$13,218,733 82.6%
Preservation	\$199,000,000	\$214,109,705 107.6%	\$198,854,075 99.9%
Rehabilitation	\$71,000,000	\$127,877,528 180.1%	\$70,773,628 99.7%
Reconstruction	\$8,000,000	\$52,751,109 659.4%	\$44,461,393 555.8%
Total	\$294,000,000	\$404,900,598 137.7%	\$327,307,829 111.3%

From this, we can see that each year, total NDOT investment exceeds the combined investment expectation, but there is less maintenance and more reconstruction spending than expected. These numbers are somewhat different from those used elsewhere in this report because of differences in how the spending is accounted for and which projects are specifically included in the defined time periods.

ADEQUACY OF PAVEMENT PRESERVATION FUNDS

The adequacy of pavement preservation funds can be determined by comparing the current average spending and resulting condition to the spending necessary to meet the established pavement condition goal. In addition to the established goal of 95% fair or better for category 1, 90% for category 2, 85% for category 3, 75% for category 4, and 50% for category 5, there is also a general expectation that the overall network PSI should not significantly degrade.

Categories 1, 2, and 3 currently meet the established pavement condition goal, and categories 4 and 5 do not. The percent fair or better for most of the categories appears stable. Compared to 2021, the 2023 performance of category 5 is better, categories 1 and 2 are about the same, category 3 is slightly worse, and category 4 is much worse. The decrease in category 3 performance was intentional, because it was performing well above the goal, and funding was decreased from historical levels. The decrease in category 4 performance was not intentional, but also not unexpected given the lack of funding provided to these routes.

As was shown in FIGURES 14 through 19, the average PSI pavement condition for the entire network is generally stable. Overall, and within each category, the 2023 PSI is very similar to the 2019 PSI.

TABLE 11 is a summary of the average number of miles rehabilitated for years 2023 and 2024 as well as the average funding allocated to each category during that same time period.

TABLE 11. Average Investment of Preservation Funds by Category

Road Prioritization Category	1	2	3	4	5
Average Centerline Miles Rehabilitated	41.5	22.7	47.2	9.8	0
Average Lane Miles Rehabilitated	192.7	64.3	94.4	19.7	0
Current Average Funds per Year	\$101.7M	\$45.4M	\$51.8M	\$7.7M	\$0.0M
Total Current Average Funds per Year	\$206.6M				

TABLE 12 shows the investment necessary to meet and maintain the established fair or better goals. This investment allows underperforming categories to meet targeted performance within five years, and keeps all other categories from degrading. Approximately \$205 million is necessary to keep the network in a state that meets this target.

TABLE 12. Funding Necessary to Meet and Maintain Fair or Better Targets

Road Prioritization Category	1	2	3	4	5
Average Centerline Miles Requiring Rehabilitation	45.6	33.2	36.2	25.9	65.0
Average Lane Miles Requiring Rehabilitation	207.3	105.0	75.3	52.8	130.2
Required Average Funds per Year	\$86.6M	\$53.3M	\$31.1M	\$14.0M	\$19.5M
Total Required Average Funds per Year	\$204.5M				

Comparing Tables 11 and 12 shows that current total spending is slightly above the total necessary to meet and maintain the currently established targets. It can also be seen that spending on category 3 roads is well above what should be necessary, category 1 spending is somewhat above requirements, category 2 spending is somewhat below, category 4 is receiving about 50% of what is required, and nothing has been spent on category 5.

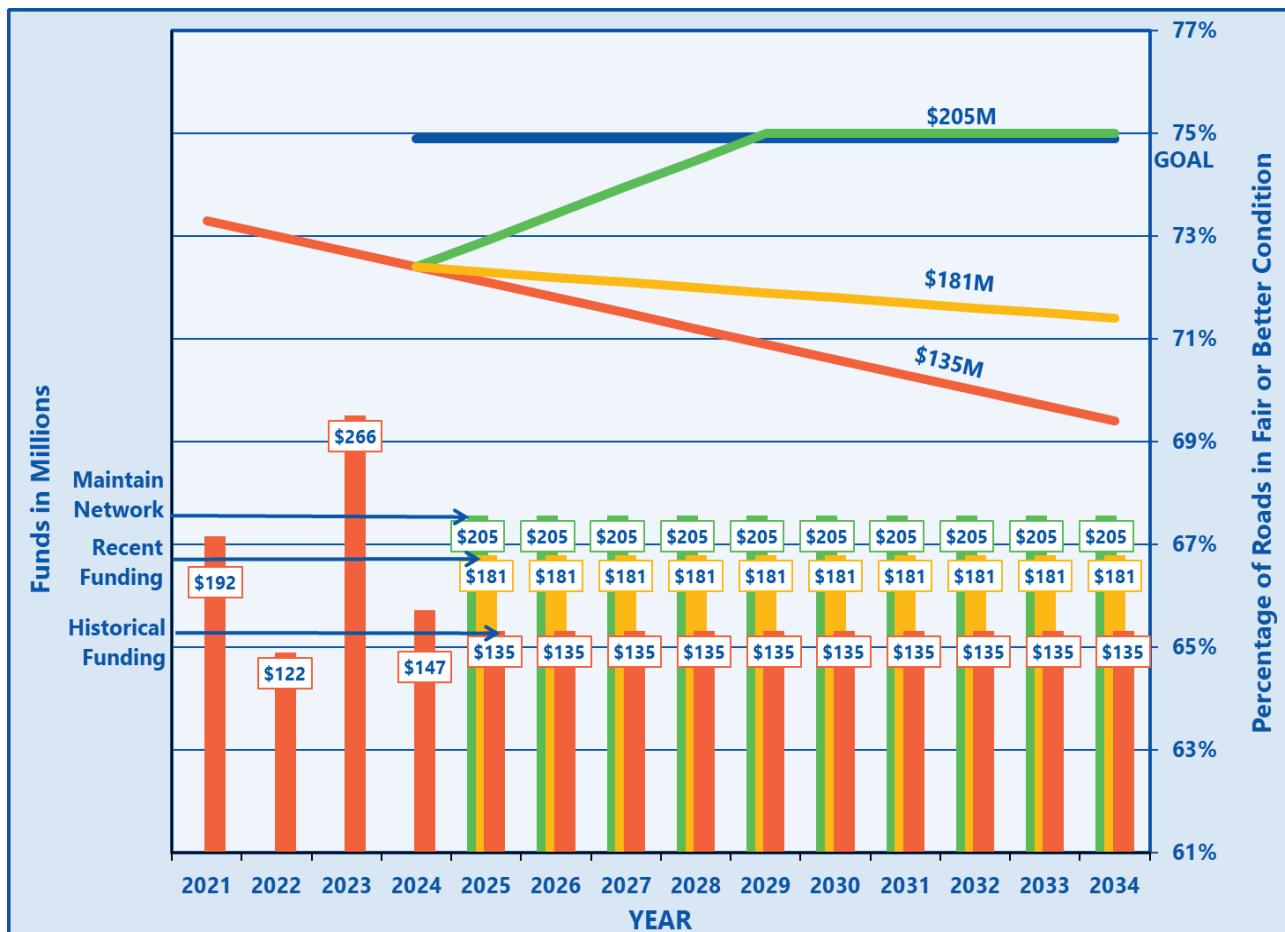
The significance of category 1 roads is clear in the current spending, where they account for nearly 50% of the funds. This helps ensure that these high priority roads are not only maintained above 95% fair or better as a group, but are also not allowed to degrade significantly below their current levels.

While the recent \$206.6 million is above what is necessary to maintain the entire network at the desired levels, project distribution is still unbalanced, and many categories are still underfunded. Project selection for FY 2025 and beyond is expected to reduce this disparity and help ensure that all categories receive the share of the funding they require.

PROGRESS IN THE 10-YEAR PLAN FOR RESURFACING OF STATE HIGHWAYS

The amount of pavement repair work has been restricted for many years due to long-term financial constraints. The funds allocated for the pavement repair budgets are limited because funds are often used for other purposes such as capacity improvement projects and other program budget obligations.

The current pavement performance goals were established to be both achievable and provide levels of service appropriate for each category. As part of the commitment to meet these goals, funding levels have also been increased beyond what has been historically provided.


FIGURE 21 illustrates the projected condition of the state-maintained roadway network over the next ten (10) years using three different budget scenarios. The scenarios presented are:

- Provide funding necessary to maintain the network consistent with the established condition goals.
- Continue to provide funding at a level consistent with the last biennium.
- Provide reduced budget consistent with the long-term historical spending level.

The budget scenario representing the current spending commitment to maintain the percent fair or better targets is represented with the green line. Appropriate spending of \$205 million per year on pavement rehabilitation work should allow each category of roads to quickly meet the established percent fair or better target and maintain the performance long-term. This is shown as a network composite target of approximately 75% going forward.

In order to show the future network condition using the historical funding levels, the 2015 to 2024 average of \$135 million is used. This budget scenario is represented by the red line, which shows average yearly condition for each historical year, and projected condition with just the previous average spending for the next ten (10) years. Spending \$135 million per year will result in the network deteriorating to a state where only approximately 69% of roads are in fair or better condition by the year 2034.

The average expenditure from 2021 through 2024 is \$181 million, which is higher than the historical average but still below the level necessary to meet target performance. This budget scenario is represented by the yellow line, which shows projected condition with the recent average spending for the next ten (10) years. Spending \$181 million per year as it has been in the last four years will result in the network deteriorating to a state where only approximately 71% of roads are in fair or better condition by the year 2034.

FIGURE 21. Future State-maintained Roadway Network Funding Alternatives

Neither the current spending levels, nor the historical average will result in a network that performs at the expected standard. Currently, categories 1, 2, and 3 meet the target performance level, but both of these alternative scenarios result in all categories except category 1 falling below target levels.

PAVEMENT PRESERVATION SUMMARY

The State Highway Preservation Report is presented to Nevada Legislature with the intent to fulfill the requirements as outlined in Nevada Revised Statute 408.203(3). NDOT is accountable to report the progress made on the resurfacing plan for state highways. The following aspects of the resurfacing plan have been addressed:

- The pavement preservation revenues and expenditures for fiscal years 2023 and 2024 were presented. The revenue for the maintenance and rehabilitation repair work constructed on state highways is primarily funded by the federal government and the State of Nevada. This revenue generally consists of vehicle fuel tax and registration fees. \$507,270,195 were invested for road maintenance and rehabilitation repair work during the last biennium. FIGURE 5 illustrates the funding sources and construction expenditures for the road repair work.
- TABLES 3, 4, and 5 summarized the rehabilitation and maintenance repair work that was advertised in fiscal years 2023 and 2024. The information includes lists of rehabilitation projects along with the associated mileage and cost for each project. The project locations and scopes of work were also reported.
- The pavement condition of the state-maintained roadway network was provided. The pavement condition was objectively measured with the Present Serviceability Index (PSI) rating system. This rating system quantifies pavement condition into one of six sections that correspond to pavement in very good, good, fair, mediocre, poor, and very poor or failed condition. The data were described using several methods including tabular format, maps, analysis by district and county distribution, and a long-term investigation displayed on column charts.
- Each road prioritization category was evaluated to determine if the goal to maintain a minimum of 95% of category 1 roads, 90% of category 2 roads, 85% of category 3 roads, 75% of category 4 roads, and 50% of category 5 roads in fair or better condition was met as shown in TABLE 9. It was concluded that category 1, 2, and 3 roads met or exceeded the established pavement condition goal, and category 4 and 5 roads did not.

- Consistency of the preservation investments was compared to the targets contained in the Nevada Transportation Asset Management Plan. TABLE 10 shows that these investment commitments are generally being met, and overall investment is above the target.
- TABLES 11 and 12 were developed to document the adequacy of pavement preservation funds. The condition of the roadway network was predicted based on deterioration rates and scheduled rehabilitation work. Predicted conditions forecast that even though the 2023-2024 average funding level of \$206.6 million per year is higher than the projected requirement of \$205 million, the project distribution is still inadequate to allow all categories to meet the performance targets.
- The progress in the 10-year plan for resurfacing of state highways was examined and two different budget scenarios were investigated. The first budget scenario included an average of \$205 million per year expenditure for rehabilitation repair work. This budget scenario would result in a consistent pavement condition level of 75% of roads in fair or better condition, with each category meeting fair or better condition goals. The second budget scenario included historical averages of \$135 million and \$181 million per year expenditure for rehabilitation repair work. These scenarios would both result in the roadway network pavement condition level staying below the target performance levels, and continuing to decrease through 2034.

Supplementary information contained in the report includes:

- An explanation of the state-maintained roadway network inventory including the PMS inventory management through designated road prioritization categories 1 through 5.
- A description of the PSI pavement condition rating system that is used to objectively rank pavement conditions for many PMS purposes.
- Definitions for various pavement repair strategies as well as the optimal construction timing based on the PSI pavement condition rating system.
- Commentary regarding the costs for construction of state highway pavement rehabilitation projects.

BRIDGE PRESERVATION

INTRODUCTION

This report summarizes the Nevada Department of Transportation's (NDOT) efforts to preserve the state's bridge infrastructure which has an approximate as-constructed value of \$6.4 billion. Preserving bridge infrastructure is one of NDOT's highest priorities. Numerous resources are employed to maintain bridges in structurally sound, functional, and safe condition. Although the focus in the following discussion is on state-maintained bridges, information on bridges maintained by other agencies is also included, as these bridges are also eligible for federal funds that are administered by NDOT. Moreover, NDOT is responsible for inspecting and reporting the condition of all the bridges open to the public in Nevada, except bridges on federal lands. Bridges on federal lands are inspected and maintained by the federal government.

THE BRIDGE MANAGEMENT SYSTEM

Bridges are managed using the National Bridge Inventory (NBI) data which provides an inventory of bridge condition, location, needed repairs, load limits, susceptibility to flooding, and ownership information. A separate prioritization list enables NDOT to evaluate earthquake susceptibility and risks. This data, together with other factors, allows NDOT to identify preservation priorities and monitor efforts to keep its bridges functioning in good condition.

BRIDGE INVENTORY

There are currently 2,153 public bridges in the NDOT bridge inventory. A bridge is a structure spanning 20 feet or more that carries traffic over a depression or obstruction and includes multiple box culverts and pipes. The maintenance of the bridge inventory is shared by many different organizations: NDOT maintains 1,239 bridges; county and city governments maintain 842 bridges; other local agencies maintain 48 bridges; private entities maintain 10 bridges; railroad maintains 6 bridges; and other state agencies maintain 8 bridges.

BRIDGE CONDITION REPORTING

Data in the NDOT bridge inventory is collected in accordance with the National Bridge Inspection Standards (NBIS) and is reported to the National Bridge Inventory (NBI). For each bridge, the condition rating is determined for three primary elements: deck, superstructure, and substructure.

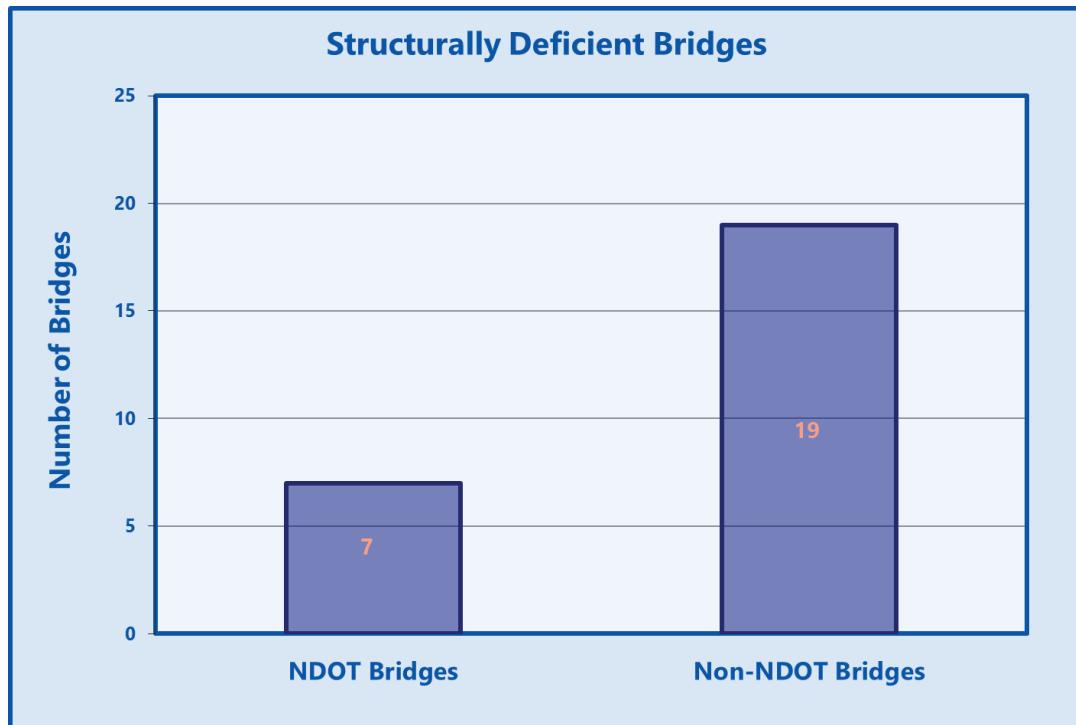
Bridge-sized culverts have a single, independent rating. NBI general condition ratings are assessed on a scale that ranges from 0 (failed condition) to 9 (excellent condition). The lowest of the three ratings for bridges, or the single rating for culverts, is used to represent the overall condition of the structure. Ratings of 7 or better, represent a bridge that is in good condition and ratings of 5 or 6 represent a bridge in fair condition. If any of the condition ratings are 4 or below, the bridge is in poor condition. A structure deemed to be in poor condition is classified as structurally deficient (SD), and becomes a priority for corrective measures, and may be posted to restrict the weight of vehicles using them. If a deficiency is determined to be severe, or the load-carrying capacity is extremely low, the bridge would be closed to protect the travelling public.

The condition assessment is based upon a physical inspection of the structure. The deleterious effects of age, environment, fatigue, hydrologic scour, settling, and traffic collisions are assessed in the evaluation. Every bridge in Nevada is inspected at least once every two years. Bridges in poor condition are inspected more often. Inspection findings are factored into the determination of the bridge load and condition ratings. The load rating denotes the strength of the bridge compared to the design-truck loading.

NDOT adheres to policies and procedures in accordance with the FHWA's requirements. The FHWA included the verbiage discussing Structurally Deficient bridges in a report to Congress entitled "2008 Status of the Nation's Highways, Bridges, and Transit: Conditions and Performance." The verbiage was as follows:

"Structurally Deficient bridges are not inherently unsafe. Bridges are considered structurally deficient if significant load-carrying elements are found to be in poor or worse condition due to deterioration and/or damage, or the adequacy of the waterway opening provided by the bridge is determined to be extremely insufficient to the point of causing intolerable traffic interruptions. That a bridge is deficient does not imply that it is likely to collapse or that it is unsafe. By conducting properly scheduled inspections, unsafe conditions may be identified; if the bridge is determined to be unsafe, the structure must be closed. A deficient bridge, when left open to traffic, typically requires significant maintenance and repair to remain in service and eventual rehabilitation or replacement to address deficiencies. To remain in service, Structurally Deficient bridges often have weight limits that restrict the gross weight of vehicles using the bridges to less

than the maximum weight typically allowed by statute."


Bridges are considered Structurally Deficient if:

- Significant load-carrying elements are found to be in poor condition.
- The bridge has insufficient load carrying capacity and may have weight limits to remain in service (see photo below for a sample weight limit posting).

Example of Structurally Deficient Bridge

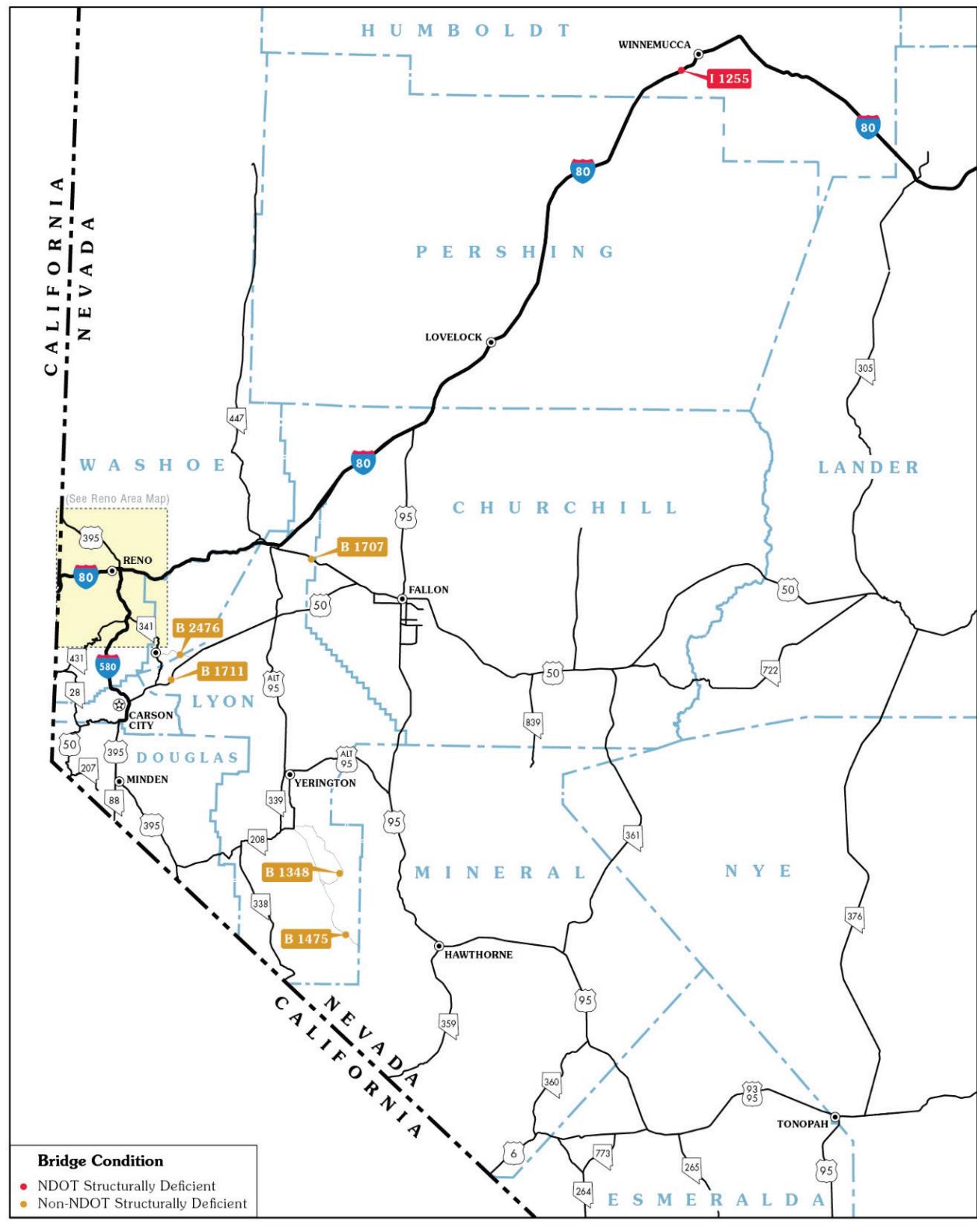

There are 1,239 bridges on the NDOT-maintained system that were reported in 2024. Based on the report, 7 or 0.6% of the NDOT bridges are Structurally Deficient. There are 914 bridges that are maintained by non-NDOT agencies that were reported in 2024. Based on the report, 19 or 2.1% of the non-NDOT bridges are Structurally Deficient. FIGURE 22 summarizes the substandard bridge conditions on the NDOT and locally maintained bridge networks.

FIGURE 22. Structurally Deficient Bridges

FIGURES 23A, 23B, 23C, 23D, 23E and 23F locate the Structurally Deficient bridges in NDOT's bridge inventory.

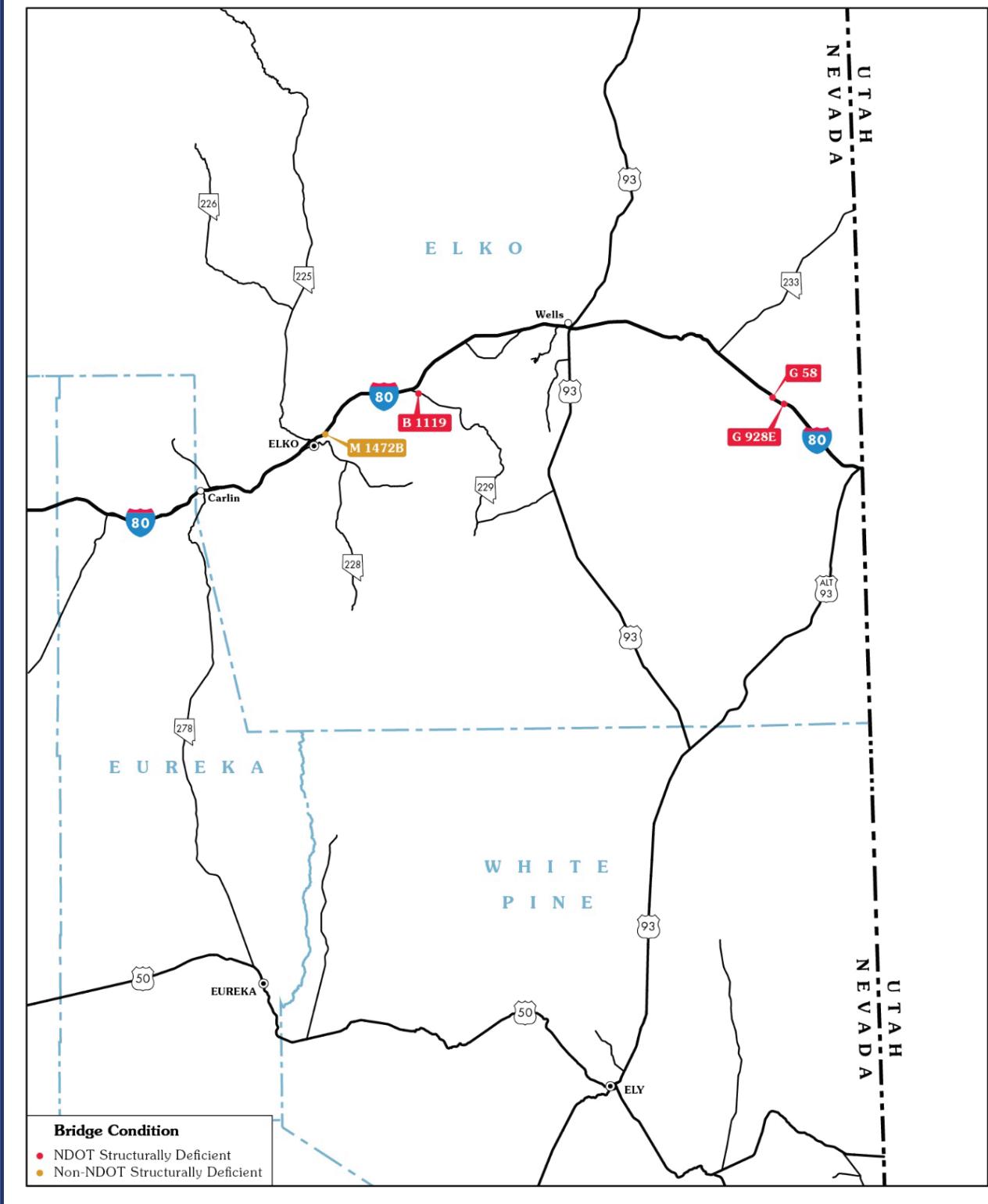

Northwestern Nevada

FIGURE 23A. Locations of Structurally Deficient Bridges

*Bridges categorized as Structurally Deficient may have less than desirable load carrying capacity or geometrics, but they are not considered unsafe. Please refer to the discussion in the Bridge Condition Reporting on Page 51 to 52.

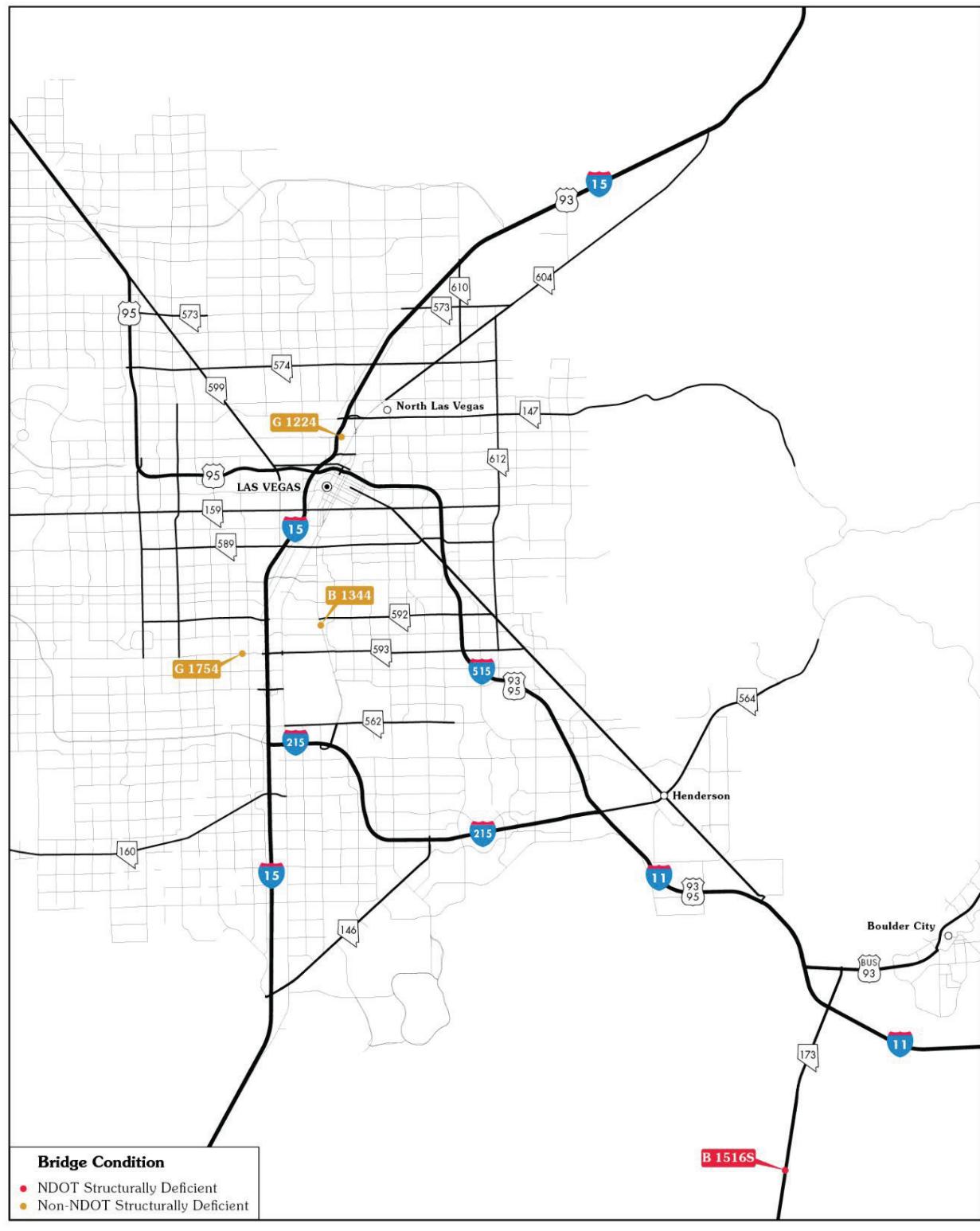

Northeastern Nevada

FIGURE 23B. Locations of Structurally Deficient Bridges

*Bridges categorized as Structurally Deficient may have less than desirable load carrying capacity or geometrics, but they are not considered unsafe. Please refer to the discussion in the Bridge Condition Reporting on Page 51 to 52.

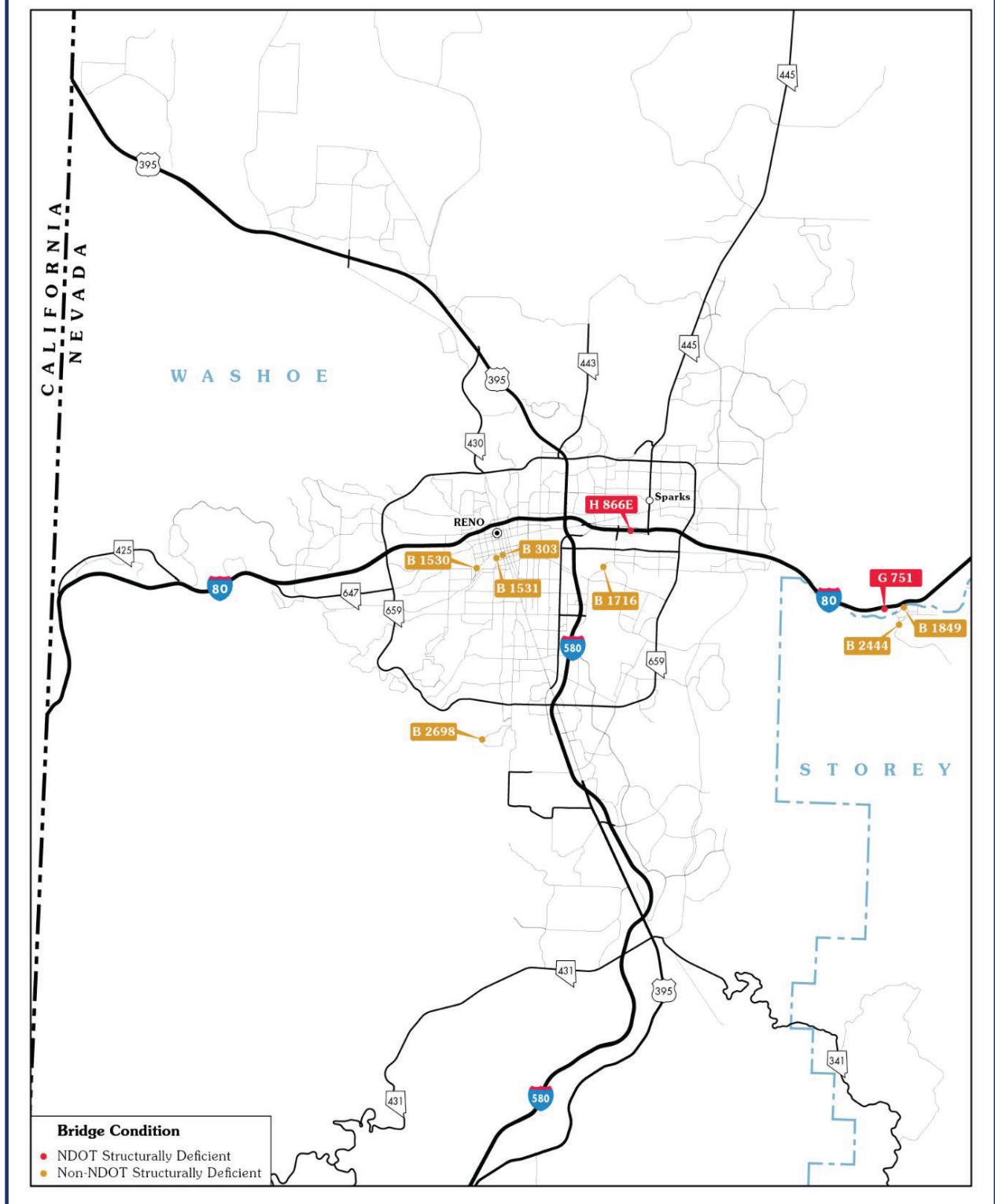

Las Vegas Area

FIGURE 23C. Locations of Structurally Deficient Bridges

*Bridges categorized as Structurally Deficient may have less than desirable load carrying capacity or geometrics, but they are not considered unsafe. Please refer to the discussion in the Bridge Condition Reporting on Page 51 to 52.

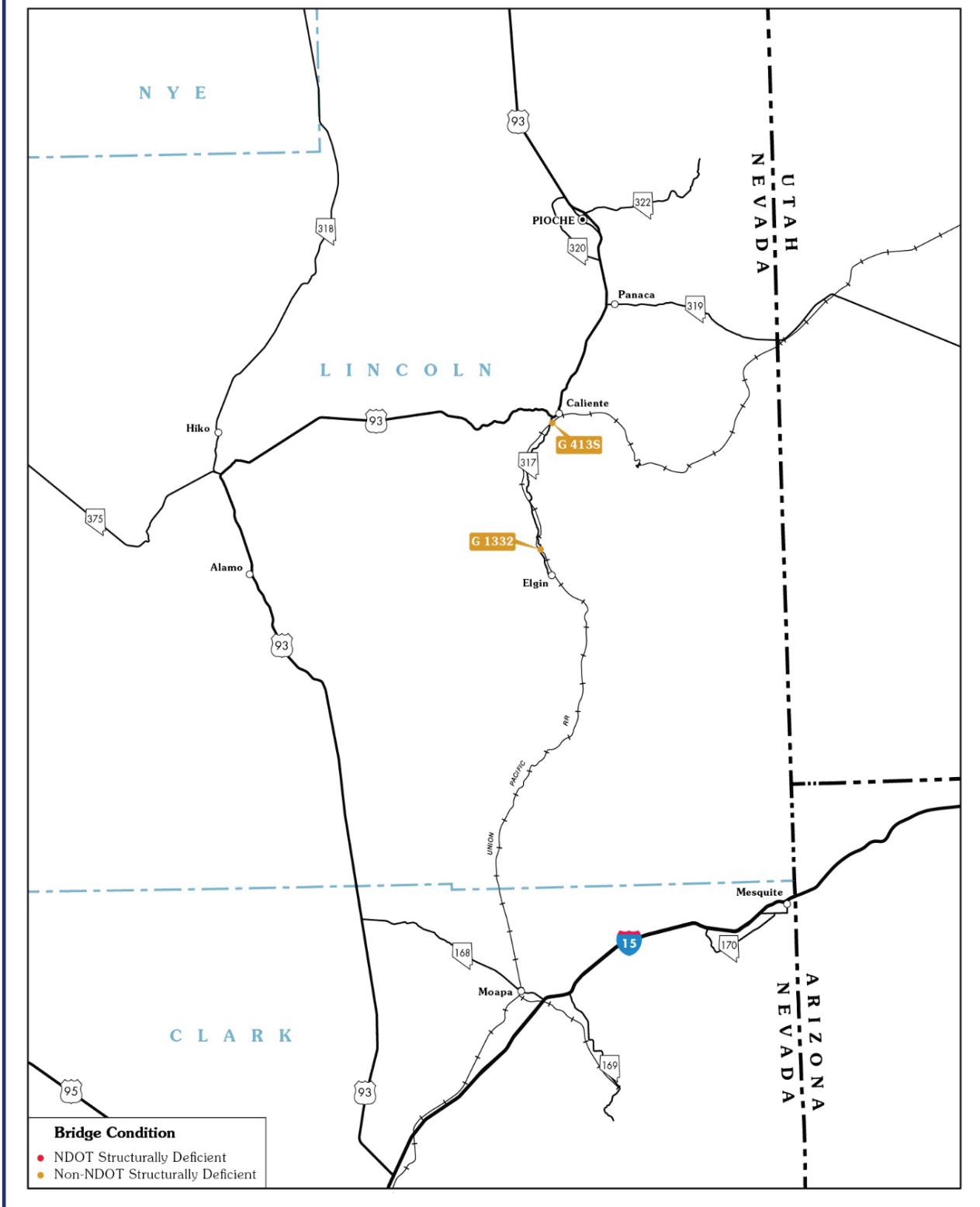

Reno Area

FIGURE 23D. Locations of Structurally Deficient Bridges

*Bridges categorized as Structurally Deficient may have less than desirable load carrying capacity or geometrics, but they are not considered unsafe. Please refer to the discussion in the Bridge Condition Reporting on Page 51 to 52.

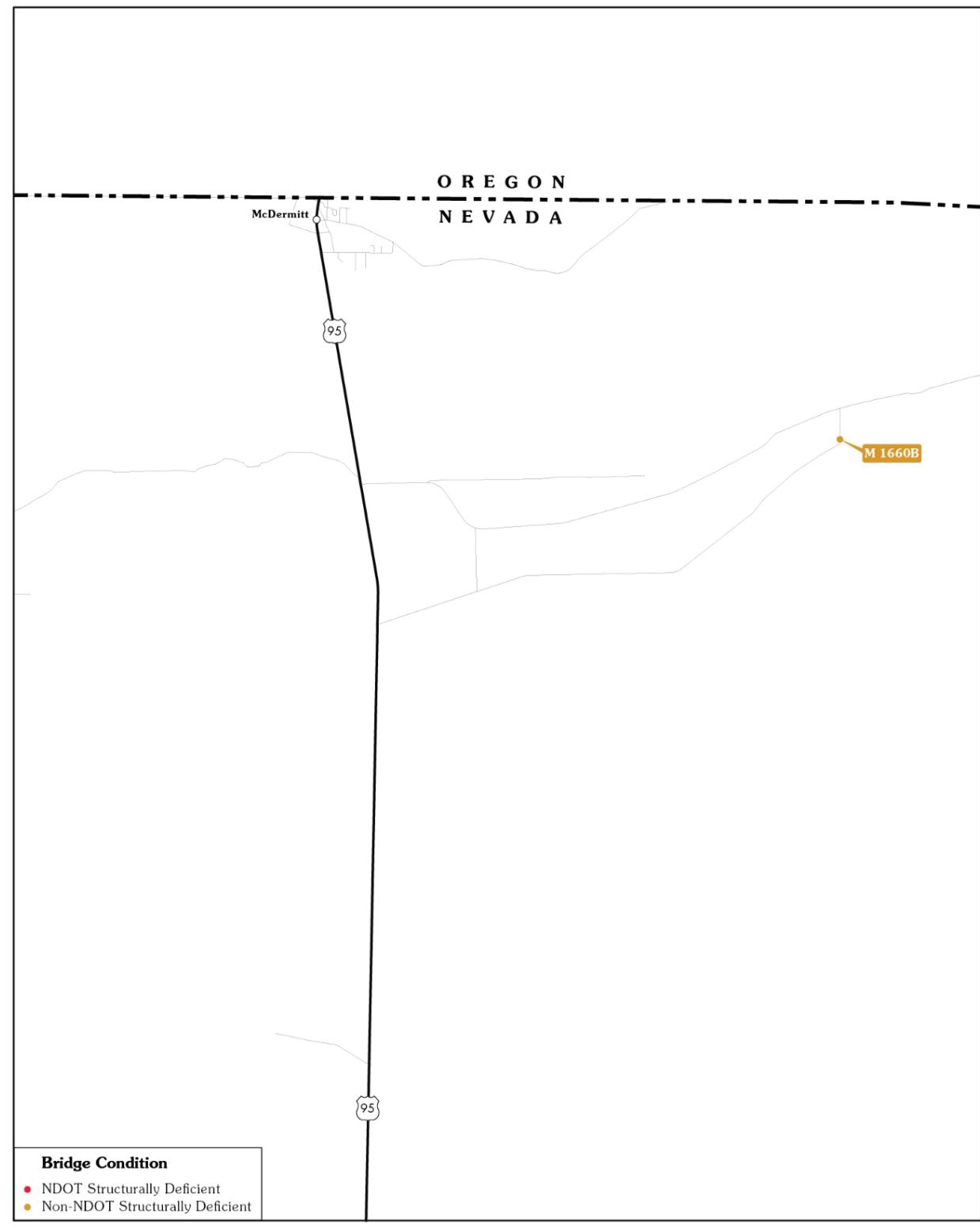

Southeastern Nevada

FIGURE 23E. Locations of Structurally Deficient Bridges

*Bridges categorized as Structurally Deficient may have less than desirable load carrying capacity or geometrics, but they are not considered unsafe. Please refer to the discussion in the Bridge Condition Reporting on Page 51 to 52.

McDermitt Area

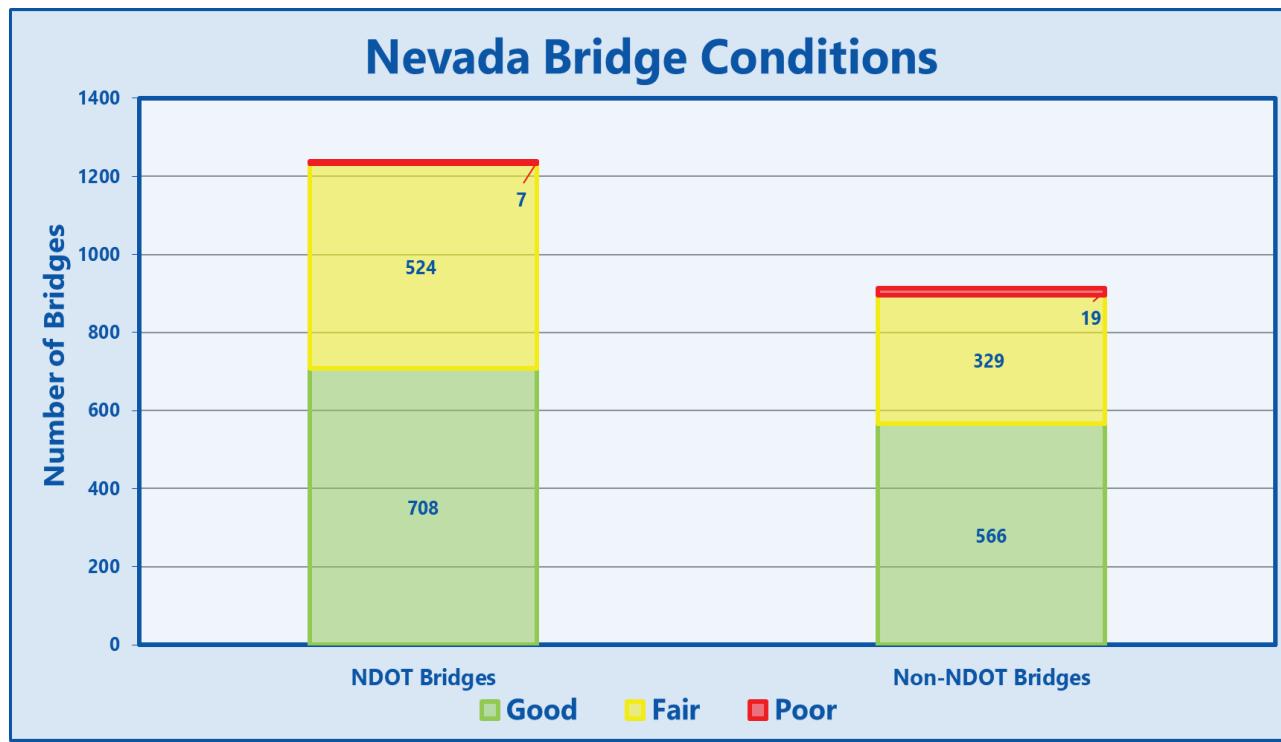


FIGURE 23F. Locations of Structurally Deficient Bridges

*Bridges categorized as Structurally Deficient may have less than desirable load carrying capacity or geometrics, but they are not considered unsafe. Please refer to the discussion in the Bridge Condition Reporting on Page 51 to 52.

In addition to the condition rating, a bridge's susceptibility to seismic activity is considered when assessing its condition or "health." Nevada is the third most seismically active state in the US. Only California and Alaska are more seismically active. The central and western parts of Nevada are the most active, but southern Nevada does have the potential for damaging earthquakes. NDOT has replaced or retrofitted 166 bridge structures at a cost of over \$75 million since NDOT began including seismic activity as a component in the project prioritization process.

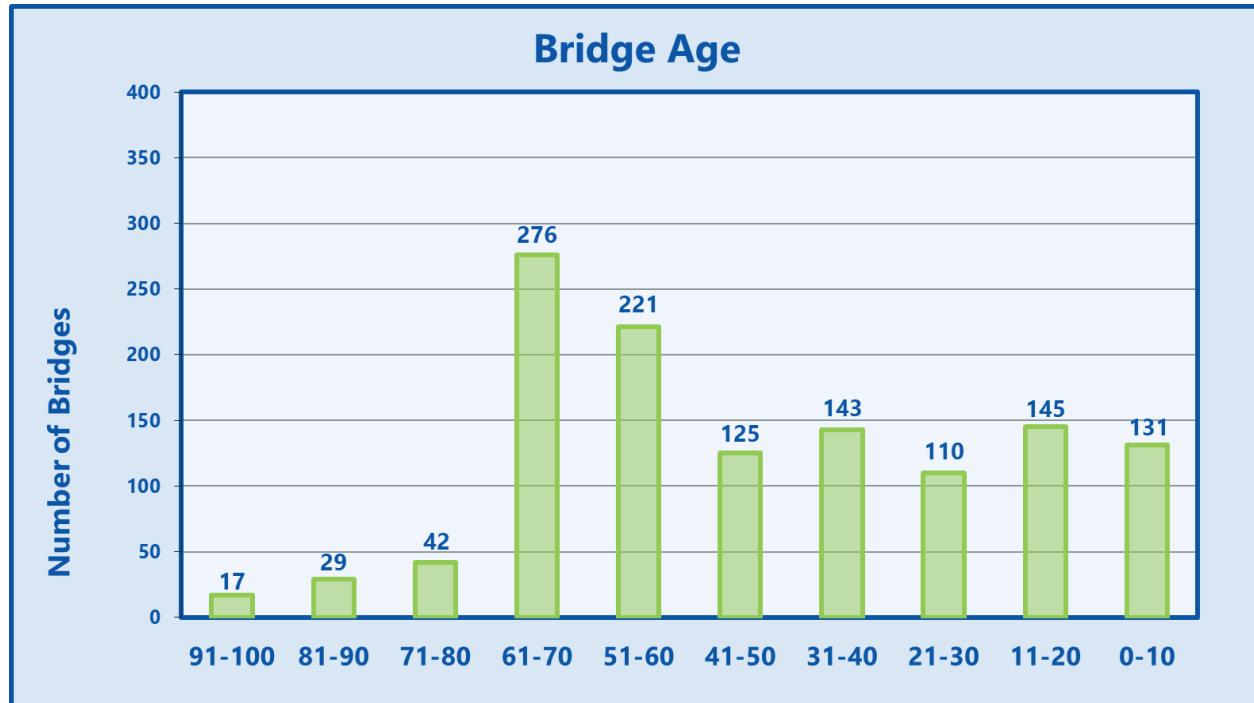

FIGURE 24 illustrates the condition of bridges in Nevada. Only 1.2% of the bridges in Nevada are considered to be in poor condition. NDOT goes above and beyond the requirement in inspecting bridges. Railroad crossings and pedestrian structures are not required to be inspected by the Federal Highway Administration. For the sake of public safety, NDOT inspects these bridges when they span NDOT facilities, but does not report these ratings.

FIGURE 24. Nevada Bridge Conditions

Nevada bridge conditions compare very favorably to the bridge conditions in many other states, even though more than half of NDOT's bridges are over 40 years old. Older bridges generally have a service life of at least 50 years. Recently built bridges are expected to have a design life of 75 years. This prolonged design life was achieved by improvements in material, design, and

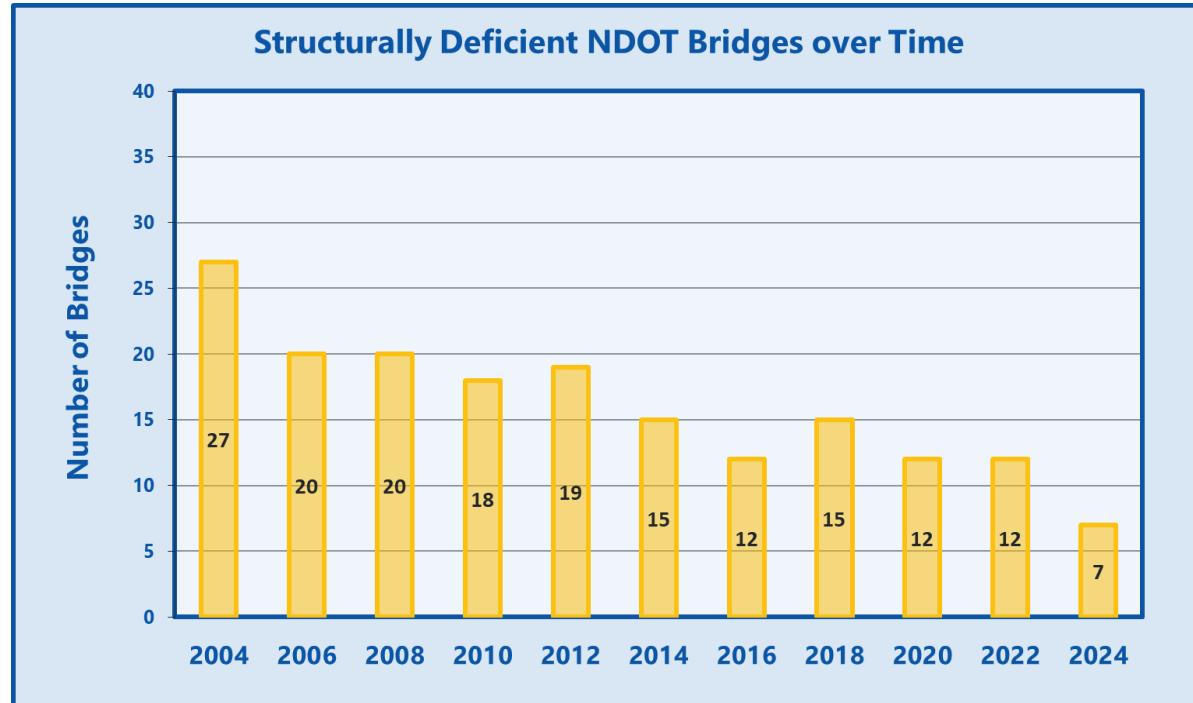

construction methods. FIGURE 25 shows the age distribution of the state's bridges in 10-year increments.

FIGURE 25. Bridge Age

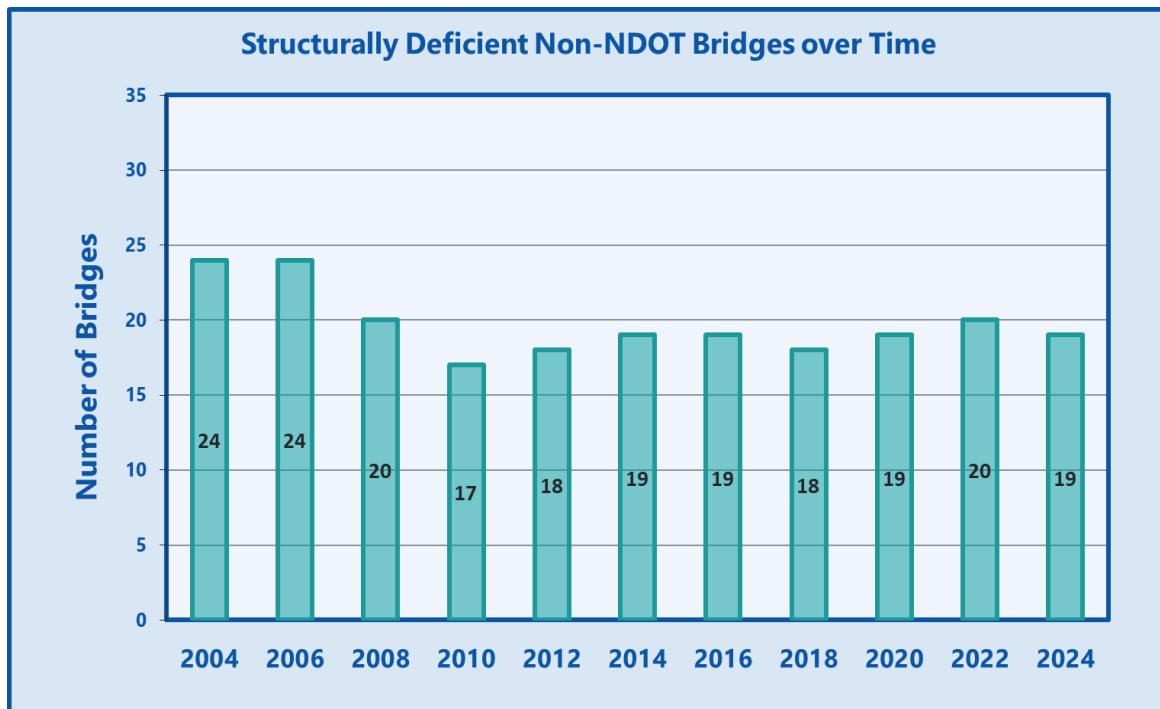

BRIDGE CONDITION OVER TIME

FIGURE 26 lists the number of Structurally Deficient NDOT bridges over the previous 20 years. As the figure shows, the number has decreased significantly.

FIGURE 26. Structurally Deficient NDOT Bridges over Time

FIGURE 27 lists the number of Structurally Deficient non-NDOT bridges over the previous 20 years. The number has been stable for the past decade and is well below the national average by percentage.

FIGURE 27. Structurally Deficient Non-NDOT Bridges over Time

THE COST OF BRIDGE CLOSURE FOR OWNERS

Structurally Deficient bridge locations are displayed in FIGURE 23A through FIGURE 23E. Currently there are no Structurally Deficient bridges on I-15 in Las Vegas and US-395 in Reno. Only two deficient structures are located on primary routes including one (H-866E) on I-80 in Reno and one on I-80 west of Wendover. These routes connect Nevada with the rest of the country and carry hundreds of thousands of automobiles and trucks on a daily basis. Some Nevada Interstate bridges carry more than 100,000 vehicles daily in northern Nevada urban areas and approximately 250,000 vehicles daily in southern Nevada urban areas. If closure of a bridge in rural Nevada was required, the detour might add a few hundred additional miles to the travelers' journeys. A bridge closure and subsequent detours in urban areas will create extensive traffic jams and cause additional vehicle crashes. In both rural and urban bridge closures, the user costs due to travel delay or crashes will be quite significant until the bridge is reconstructed or repaired. Often, user costs due to delay or crashes can be in the hundreds of thousands of dollars per day. The importance of bridge maintenance and rehabilitation cannot be overemphasized.

PROJECT PRIORITIZATION

The bridge preservation program competes for funding with capacity improvement, operations, pavement, hydraulic, and safety projects and programs. Since available funding is limited, engineers prioritize projects in such a manner that will improve the condition of the entire bridge infrastructure network while maximizing bridge performance and keeping costs to a minimum.

Bridge projects are developed and prioritized based upon bridge condition (Condition Ratings and Structurally Deficient status), essentiality for public needs (NHS status, ADT, and ADTT etc.), and association of other ongoing project work at the same location (pavement rehabilitation work etc.). Seismic retrofit work is prioritized based on a bridge's earthquake vulnerability and importance. The seismic vulnerability of older state-owned bridges has been investigated. Certain bridge types, such as large culverts, do not need seismic retrofit.

BRIDGE PRESERVATION FUNDING

Similar to pavement rehabilitation, some bridge preservation work is paid for with state fuel taxes and vehicle registration fees. Historically, available state funding has only been sufficient to provide the required match for federal funds and to fund bridge maintenance costs.

Along with the Departments previously established funding commitments, recent passage of the Infrastructure Investment and Jobs Acct (IIJA) has provided additional resources for the expansion of NDOT's bridge rehabilitation and preservation program. Included in the infrastructure bill are specific federal formula funding amounts for each state as well as small and large bridge grant opportunities.

Under federal funding guidelines, off-system bridges must receive more than \$2 million of the available federal funds. Bridges are described as off-system when the bridges are not located on the federal aid highway system. Off-system roads include Rural Minor Collector and Rural and Urban Local roads. Bridges are described as on-system when the bridges are located on the federal aid highway system. The Interstate, Urban Collector, and Rural Minor Arterial roads are included in the federal aid highway system. Of the 1,239 state-maintained bridges, 933 bridges are on-system and 306 bridges are off-system. Of the 914 county, city, other local agency, private,

BIENNIAL EXPENDITURES FOR FISCAL YEARS 2023 TO 2024

TABLE 13 lists approximately \$40.6 million worth of bridge preservation and rehabilitation work that NDOT obligated in fiscal years 2023 and 2024.

TABLE 13. Bridge Expenditures in Fiscal Years 2023 and 2024

Fiscal Year	Repair Strategy					Total
	Maintenance	Preservation	Rehabilitation	Replacement	Seismic Retrofit	
2023	\$1,546,211	\$24,644,090	\$10,285,826	\$9,521,154	\$13,987,880	\$59,985,160
2024	\$2,044,551	\$2,403,404	\$3,305,052	\$12,986,426	\$1,122,215	\$21,861,649
Biennium Total	\$3,590,762	\$27,047,494	\$13,590,878	\$22,507,580	\$15,110,095	\$81,846,809

PRESENT FUNDING VERSUS NEEDED FUNDING

The majority of NDOT maintained bridges were built prior to the 1980s. These older bridges typically have a useful service life of about 50 years, although bridges that were built more recently are expected to have a useful service life of 75 years. It is anticipated that most bridges approaching 50 years old will require major rehabilitation or replacement relatively soon. FIGURE 25 illustrates that many NDOT maintained bridges are approaching 50 years old and may be reaching the end of their useful service life. The estimated cost to replace all of the NDOT maintained bridges that are currently over 50 years old is \$1.1 billion. Because of the large number of bridges approaching 50 years old, the estimated cost to replace all of the NDOT maintained bridges that will be over 50 years old ten years from now is \$1.8 billion.

Replacing all of NDOT's bridges over 50 years old is not practical to accomplish in five years or even ten years. The strategy to forecast future bridge preservation costs is to replace the bridges gradually over the next fifty years, before the bridges reach 100 years old. Replacing 2% of the bridges over 50 years old each year will allow for a gradual replacement of all the old bridges, but it does not replace the bridges quickly enough to decrease the number of bridges over 50 years old. Since NDOT already has 653 bridges over 50 years old, replacing 3 bridges a year is a replacement rate of 0.5% which is inadequate. Gradually increasing the replacement rate to 2% over the next ten years will ultimately require replacing 16 bridges a year because NDOT will have approximately 800 bridges over 50 years old at that time. If a 2% annual replacement rate is maintained for the subsequent ten years, the trends will begin to stabilize; twenty years from now NDOT would have approximately 730 bridges over 50 years old and would be replacing 16 bridges each year.

BRIDGE PRESERVATION ACTION PLAN

NDOT's bridge preservation action plan is similar to plans detailed in previous State Highway Preservation Reports. The action plan is to preserve Nevada's public bridges in good condition by implementing the following bridge management practices:

- Replace or rehabilitate Structurally Deficient bridges before the bridges become hazardous or overly burdensome to users.
- Apply timely corrective measures to existing structures.
- Apply effective preventive maintenance strategies to existing structures.

BRIDGE PRESERVATION SUMMARY

Nevada has enjoyed the benefit of good bridge conditions as compared to the bridge conditions in many other states for quite a while. Nevada's preservation program and favorable environment have contributed to the positive results. The overall good condition of our inventory has allowed us to shift from a previous "worst first" approach to a more proactive preservation approach. However, NDOT's bridge assets are aging. After a useful life of 50 years, many of NDOT's older bridges will require replacement. NDOT's current bridge replacement rate of approximately 3 bridges a year will not keep up with the large number of bridges reaching the end of their useful life. Increased spending in bridge corrective maintenance, rehabilitation, and replacement is necessary to preserve NDOT's bridge assets and to avoid costly bridge closures and emergency bridge replacements. Building on the success of the past two-year cycle, NDOT will continue to prioritize necessary preservation and rehabilitation work and increase the rate of structure replacements to position the Department for continued success in the future.

**Prepared by the
Performance Analysis Division
NEVADA DEPARTMENT OF TRANSPORTATION
1263 SOUTH STEWART STREET
CARSON CITY, NV 89712
www.nevadadot.com**

**Tracy Larkin Thomason, P.E.
Director**

**Joe Lombardo
Governor**